Clinical Potential of a New Approach to MRI Acceleration View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Nadine L. Dispenza, Sebastian Littin, Maxim Zaitsev, R. Todd Constable, Gigi Galiana

ABSTRACT

Fast ROtary Nonlinear Spatial ACquisition (FRONSAC) was recently introduced as a new strategy that applies nonlinear gradients as a small perturbation to improve image quality in highly undersampled MRI. In addition to experimentally showing the previously simulated improvement to image quality, this work introduces the insight that Cartesian-FRONSAC retains many desirable features of Cartesian imaging. Cartesian-FRONSAC preserves the existing linear gradient waveforms of the Cartesian sequence while adding oscillating nonlinear gradient waveforms. Experiments show that performance is essentially identical to Cartesian imaging in terms of (1) resilience to experimental imperfections, like timing errors or off-resonance spins, (2) accommodating scan geometry changes without the need for recalibration or additional field mapping, (3) contrast generation, as in turbo spin echo. Despite these similarities to Cartesian imaging, which provides poor parallel imaging performance, Cartesian-FRONSAC consistently shows reduced undersampling artifacts and better response to advanced reconstruction techniques. A final experiment shows that hardware requirements are also flexible. Cartesian-FRONSAC improves accelerated imaging while retaining the robustness and flexibility critical to real clinical use. More... »

PAGES

1912

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36802-5

DOI

http://dx.doi.org/10.1038/s41598-018-36802-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112094540

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30760731


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Biomedical Engineering, Yale University, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dispenza", 
        "givenName": "Nadine L.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.7708.8", 
          "name": [
            "Department of Diagnostic Radiology, Medical Physics, University Medical Center Freiburg, Breisacher Str. 60a, 79106, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Littin", 
        "givenName": "Sebastian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Center Freiburg", 
          "id": "https://www.grid.ac/institutes/grid.7708.8", 
          "name": [
            "Department of Diagnostic Radiology, Medical Physics, University Medical Center Freiburg, Breisacher Str. 60a, 79106, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitsev", 
        "givenName": "Maxim", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Radiology and Biomedical Imaging, Yale University, 06520, New Haven, CT, USA", 
            "Department of Neurosurgery, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Constable", 
        "givenName": "R. Todd", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yale University", 
          "id": "https://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Department of Radiology and Biomedical Imaging, Yale University, 06520, New Haven, CT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galiana", 
        "givenName": "Gigi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.20819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000131680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000131680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000647026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002650411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmri.20320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002650411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004356511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004356511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006066834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006183265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007226138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009061597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24494", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009345523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012449961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014922979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015424945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.1910380414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018509237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023308255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023322000", 
          "https://doi.org/10.1038/ncomms13702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2594(200010)44:4<602::aid-mrm14>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025405172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025997937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026454831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029323697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030101481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030259736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/242190a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031397834", 
          "https://doi.org/10.1038/242190a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-008-0105-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034760603", 
          "https://doi.org/10.1007/s10334-008-0105-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10334-008-0105-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034760603", 
          "https://doi.org/10.1007/s10334-008-0105-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.23146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035044168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035737847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.22425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035737847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-1098(1999)10:3<216::aid-ima3>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036803680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.21391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037838340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.24114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037910933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cmr.a.21243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038541259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cmr.a.21243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038541259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039826229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041918058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.25085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049261401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.611345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2007.914728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061422951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.1986.4307732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061694123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2017.2650960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2002.807005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061798816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/0007-1285-50-591-188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064551653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085058132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.26700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085058132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmr.2017.06.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085962623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icmipe.2013.6864568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094261026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isbi.2016.7493320", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095595792"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Fast ROtary Nonlinear Spatial ACquisition (FRONSAC) was recently introduced as a new strategy that applies nonlinear gradients as a small perturbation to improve image quality in highly undersampled MRI. In addition to experimentally showing the previously simulated improvement to image quality, this work introduces the insight that Cartesian-FRONSAC retains many desirable features of Cartesian imaging. Cartesian-FRONSAC preserves the existing linear gradient waveforms of the Cartesian sequence while adding oscillating nonlinear gradient waveforms. Experiments show that performance is essentially identical to Cartesian imaging in terms of (1) resilience to experimental imperfections, like timing errors or off-resonance spins, (2) accommodating scan geometry changes without the need for recalibration or additional field mapping, (3) contrast generation, as in turbo spin echo. Despite these similarities to Cartesian imaging, which provides poor parallel imaging performance, Cartesian-FRONSAC consistently shows reduced undersampling artifacts and better response to advanced reconstruction techniques. A final experiment shows that hardware requirements are also flexible. Cartesian-FRONSAC improves accelerated imaging while retaining the robustness and flexibility critical to real clinical use.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36802-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2502018", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5475983", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7071947", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2502169", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Clinical Potential of a New Approach to MRI Acceleration", 
    "pagination": "1912", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e72af1894651a249c9236a404dc236663a607729caf27faa1f6cc154a1967669"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30760731"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36802-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112094540"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36802-5", 
      "https://app.dimensions.ai/details/publication/pub.1112094540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78947_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36802-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36802-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36802-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36802-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36802-5'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36802-5 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N513b42bc98a54e51a93a4bf151ff07a1
4 schema:citation sg:pub.10.1007/s10334-008-0105-7
5 sg:pub.10.1038/242190a0
6 sg:pub.10.1038/ncomms13702
7 https://doi.org/10.1002/(sici)1098-1098(1999)10:3<216::aid-ima3>3.0.co;2-q
8 https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s
9 https://doi.org/10.1002/1522-2594(200010)44:4<602::aid-mrm14>3.0.co;2-5
10 https://doi.org/10.1002/cmr.a.21243
11 https://doi.org/10.1002/jmri.20320
12 https://doi.org/10.1002/mrm.10171
13 https://doi.org/10.1002/mrm.1910380414
14 https://doi.org/10.1002/mrm.20819
15 https://doi.org/10.1002/mrm.21391
16 https://doi.org/10.1002/mrm.21643
17 https://doi.org/10.1002/mrm.22425
18 https://doi.org/10.1002/mrm.22463
19 https://doi.org/10.1002/mrm.22672
20 https://doi.org/10.1002/mrm.23146
21 https://doi.org/10.1002/mrm.24114
22 https://doi.org/10.1002/mrm.24115
23 https://doi.org/10.1002/mrm.24282
24 https://doi.org/10.1002/mrm.24443
25 https://doi.org/10.1002/mrm.24494
26 https://doi.org/10.1002/mrm.24928
27 https://doi.org/10.1002/mrm.25085
28 https://doi.org/10.1002/mrm.25152
29 https://doi.org/10.1002/mrm.25235
30 https://doi.org/10.1002/mrm.25347
31 https://doi.org/10.1002/mrm.25364
32 https://doi.org/10.1002/mrm.25423
33 https://doi.org/10.1002/mrm.25703
34 https://doi.org/10.1002/mrm.26145
35 https://doi.org/10.1002/mrm.26235
36 https://doi.org/10.1002/mrm.26700
37 https://doi.org/10.1016/j.jmr.2017.06.006
38 https://doi.org/10.1109/42.611345
39 https://doi.org/10.1109/icmipe.2013.6864568
40 https://doi.org/10.1109/isbi.2016.7493320
41 https://doi.org/10.1109/msp.2007.914728
42 https://doi.org/10.1109/tmi.1986.4307732
43 https://doi.org/10.1109/tmi.2017.2650960
44 https://doi.org/10.1109/tsp.2002.807005
45 https://doi.org/10.1259/0007-1285-50-591-188
46 schema:datePublished 2019-12
47 schema:datePublishedReg 2019-12-01
48 schema:description Fast ROtary Nonlinear Spatial ACquisition (FRONSAC) was recently introduced as a new strategy that applies nonlinear gradients as a small perturbation to improve image quality in highly undersampled MRI. In addition to experimentally showing the previously simulated improvement to image quality, this work introduces the insight that Cartesian-FRONSAC retains many desirable features of Cartesian imaging. Cartesian-FRONSAC preserves the existing linear gradient waveforms of the Cartesian sequence while adding oscillating nonlinear gradient waveforms. Experiments show that performance is essentially identical to Cartesian imaging in terms of (1) resilience to experimental imperfections, like timing errors or off-resonance spins, (2) accommodating scan geometry changes without the need for recalibration or additional field mapping, (3) contrast generation, as in turbo spin echo. Despite these similarities to Cartesian imaging, which provides poor parallel imaging performance, Cartesian-FRONSAC consistently shows reduced undersampling artifacts and better response to advanced reconstruction techniques. A final experiment shows that hardware requirements are also flexible. Cartesian-FRONSAC improves accelerated imaging while retaining the robustness and flexibility critical to real clinical use.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf N61a57844fb1e4a47a7b28e072e6fda5b
53 N8c0fc442d73c43369c27599ac9b411d8
54 sg:journal.1045337
55 schema:name Clinical Potential of a New Approach to MRI Acceleration
56 schema:pagination 1912
57 schema:productId N3dd44d4647a14812b116a8afeba12174
58 N62406787ab454360bb9ae2b0ea9a1306
59 N7c6e5e2ae4724d30a90852f6a6312060
60 Na4a9f6fd876d4d99929a6162273aa108
61 Nf13b09435f85498c9ee15132ac535287
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112094540
63 https://doi.org/10.1038/s41598-018-36802-5
64 schema:sdDatePublished 2019-04-11T13:18
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nfa42e98af63a4648879f4f672c47809b
67 schema:url https://www.nature.com/articles/s41598-018-36802-5
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N033c79fc7031484695833ea95b29bcb1 schema:affiliation https://www.grid.ac/institutes/grid.7708.8
72 schema:familyName Zaitsev
73 schema:givenName Maxim
74 rdf:type schema:Person
75 N1249db77d71841809c164017996d9fcc rdf:first Nb3b5cb4489f941008dc2df2326b35dd9
76 rdf:rest Nffa569278e6f47f1a22ab911c7c2ad5a
77 N2fd0f8de815f44ef8e01588f2a1db931 rdf:first Na52d34782c4f45b39d6a1d1c9b117f3b
78 rdf:rest rdf:nil
79 N3dd44d4647a14812b116a8afeba12174 schema:name nlm_unique_id
80 schema:value 101563288
81 rdf:type schema:PropertyValue
82 N513b42bc98a54e51a93a4bf151ff07a1 rdf:first Ncd179505301544ccaa6bbf8de1b37565
83 rdf:rest N1249db77d71841809c164017996d9fcc
84 N61a57844fb1e4a47a7b28e072e6fda5b schema:volumeNumber 9
85 rdf:type schema:PublicationVolume
86 N62406787ab454360bb9ae2b0ea9a1306 schema:name doi
87 schema:value 10.1038/s41598-018-36802-5
88 rdf:type schema:PropertyValue
89 N7c6e5e2ae4724d30a90852f6a6312060 schema:name pubmed_id
90 schema:value 30760731
91 rdf:type schema:PropertyValue
92 N8c0fc442d73c43369c27599ac9b411d8 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Na4a9f6fd876d4d99929a6162273aa108 schema:name readcube_id
95 schema:value e72af1894651a249c9236a404dc236663a607729caf27faa1f6cc154a1967669
96 rdf:type schema:PropertyValue
97 Na52d34782c4f45b39d6a1d1c9b117f3b schema:affiliation https://www.grid.ac/institutes/grid.47100.32
98 schema:familyName Galiana
99 schema:givenName Gigi
100 rdf:type schema:Person
101 Nabafa49a2d134ddc80790ae934eb4f09 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
102 schema:familyName Constable
103 schema:givenName R. Todd
104 rdf:type schema:Person
105 Nb3b5cb4489f941008dc2df2326b35dd9 schema:affiliation https://www.grid.ac/institutes/grid.7708.8
106 schema:familyName Littin
107 schema:givenName Sebastian
108 rdf:type schema:Person
109 Ncd179505301544ccaa6bbf8de1b37565 schema:affiliation https://www.grid.ac/institutes/grid.47100.32
110 schema:familyName Dispenza
111 schema:givenName Nadine L.
112 rdf:type schema:Person
113 Nf13b09435f85498c9ee15132ac535287 schema:name dimensions_id
114 schema:value pub.1112094540
115 rdf:type schema:PropertyValue
116 Nfa42e98af63a4648879f4f672c47809b schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nfbfcfbc793364c5d803042622918b314 rdf:first Nabafa49a2d134ddc80790ae934eb4f09
119 rdf:rest N2fd0f8de815f44ef8e01588f2a1db931
120 Nffa569278e6f47f1a22ab911c7c2ad5a rdf:first N033c79fc7031484695833ea95b29bcb1
121 rdf:rest Nfbfcfbc793364c5d803042622918b314
122 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
123 schema:name Physical Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
126 schema:name Other Physical Sciences
127 rdf:type schema:DefinedTerm
128 sg:grant.2502018 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36802-5
129 rdf:type schema:MonetaryGrant
130 sg:grant.2502169 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36802-5
131 rdf:type schema:MonetaryGrant
132 sg:grant.5475983 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36802-5
133 rdf:type schema:MonetaryGrant
134 sg:grant.7071947 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36802-5
135 rdf:type schema:MonetaryGrant
136 sg:journal.1045337 schema:issn 2045-2322
137 schema:name Scientific Reports
138 rdf:type schema:Periodical
139 sg:pub.10.1007/s10334-008-0105-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034760603
140 https://doi.org/10.1007/s10334-008-0105-7
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/242190a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031397834
143 https://doi.org/10.1038/242190a0
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ncomms13702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023322000
146 https://doi.org/10.1038/ncomms13702
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/(sici)1098-1098(1999)10:3<216::aid-ima3>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1036803680
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/(sici)1522-2594(199911)42:5<952::aid-mrm16>3.0.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1029323697
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/1522-2594(200010)44:4<602::aid-mrm14>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025405172
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/cmr.a.21243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038541259
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/jmri.20320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002650411
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/mrm.10171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012449961
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/mrm.1910380414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018509237
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/mrm.20819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000131680
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/mrm.21391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037838340
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/mrm.21643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000647026
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/mrm.22425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035737847
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/mrm.22463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004356511
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1002/mrm.22672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007226138
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1002/mrm.23146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035044168
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1002/mrm.24114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037910933
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1002/mrm.24115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026454831
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1002/mrm.24282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014922979
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1002/mrm.24443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025997937
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1002/mrm.24494 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009345523
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/mrm.24928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030259736
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1002/mrm.25085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049261401
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1002/mrm.25152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006183265
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1002/mrm.25235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041918058
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/mrm.25347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023308255
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/mrm.25364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009061597
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/mrm.25423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030101481
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/mrm.25703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039826229
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/mrm.26145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006066834
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/mrm.26235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015424945
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/mrm.26700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085058132
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.jmr.2017.06.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085962623
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/42.611345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170548
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/icmipe.2013.6864568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094261026
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/isbi.2016.7493320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095595792
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/msp.2007.914728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061422951
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/tmi.1986.4307732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694123
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/tmi.2017.2650960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696872
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/tsp.2002.807005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061798816
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1259/0007-1285-50-591-188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064551653
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.47100.32 schema:alternateName Yale University
227 schema:name Department of Biomedical Engineering, Yale University, New Haven, CT, USA
228 Department of Neurosurgery, Yale University, 06520, New Haven, CT, USA
229 Department of Radiology and Biomedical Imaging, Yale University, 06520, New Haven, CT, USA
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.7708.8 schema:alternateName University Medical Center Freiburg
232 schema:name Department of Diagnostic Radiology, Medical Physics, University Medical Center Freiburg, Breisacher Str. 60a, 79106, Freiburg, Germany
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...