Self-Propagating Heat Synthetic Reactivity of Fine Aluminum Particles via Spontaneously Coated Nickel Layer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Dong Won Kim, Kyung Tae Kim, Gu Hyun Kwon, Kyung Song, Injoon Son

ABSTRACT

Aluminum powders are known to provide outstanding volumetric exothermic enthalpy energy during thermal oxidation. However, the amount of energy released tends to be limited by the dense surface oxide (Al2O3) layer of the powder. Hence, a prerequisite for improving the reactivity of passivated Al particles is to remove the Al2O3 film from the surface. Considering that the self-propagating high-temperature synthesis (SHS) reaction of Ni and Al can generate additional exothermic heat in Al powder, Ni can be considered as a promising alternative to the surface oxide layer. Here, we report oxide-layer-free fine Al particles with a characteristic Ni/Al interface, where a Ni layer replaces the Al2O3 film. The microstructure of the synthesized powder consists of a 200-nm-thick Ni layer homogeneously coated on the Al surface, which has nanosized craters caused by the geometrical removal of Al2O3. Thermal analysis and in-situ heating transmission electron microscopy (TEM) results clearly show that active interdiffusion of atoms through the Ni/Al interface results in the formation of intermetallic compounds to provide additional exothermic energy, compared to the result for simply mixing Ni and Al powders. Hence, these findings provide new routes for the design and application of reactive metallic particles using the SHS reaction. More... »

PAGES

1033

References to SciGraph publications

  • 2012-03. Mechanically activated SHS of NiAl: Effect of Ni morphology and mechanoactivation conditions in INTERNATIONAL JOURNAL OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS
  • 2017-12. Improved Energetic-Behaviors of Spontaneously Surface-Mediated Al Particles in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-36760-y

    DOI

    http://dx.doi.org/10.1038/s41598-018-36760-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1111777445

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30705301


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Korea Institute of Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.410902.e", 
              "name": [
                "Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, 51508, Changwon, Gyeongnam, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Dong Won", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea Institute of Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.410902.e", 
              "name": [
                "Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, 51508, Changwon, Gyeongnam, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Kyung Tae", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea Institute of Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.410902.e", 
              "name": [
                "Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, 51508, Changwon, Gyeongnam, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kwon", 
            "givenName": "Gu Hyun", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Korea Institute of Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.410902.e", 
              "name": [
                "Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, 51508, Changwon, Gyeongnam, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Song", 
            "givenName": "Kyung", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kyungpook National University", 
              "id": "https://www.grid.ac/institutes/grid.258803.4", 
              "name": [
                "Kyungpook National University, 80 Daehakro, 41566, Buk-gu, Daegu, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Son", 
            "givenName": "Injoon", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.apsusc.2013.10.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002085723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apsusc.2016.11.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005680951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2006.08.106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007106141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3ta11603d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008951227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2012.06.095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010376858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2015.01.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014612844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-5093(00)01407-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023490434"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.surfcoat.2008.11.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024375667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1061386212010086", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029170618", 
              "https://doi.org/10.3103/s1061386212010086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2003.08.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035325745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0966-9795(01)00109-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048959787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am5012707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052004191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adem.201400151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053211262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsami.5b00891", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055126474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acsami.5b05238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055127593"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am404583h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055144632"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am4058138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055144978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/am900757r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055147932"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm047931k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055410618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm047931k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055410618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp308620t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056091521"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la901822h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056165250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la901822h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056165250"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl400590k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056219981"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3485673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057960230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.59.14271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060591149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.59.14271", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060591149"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1615/intjenergeticmaterialschemprop.2012001355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068137941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-04758-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090344096", 
              "https://doi.org/10.1038/s41598-017-04758-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1106520936", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-12", 
        "datePublishedReg": "2019-12-01", 
        "description": "Aluminum powders are known to provide outstanding volumetric exothermic enthalpy energy during thermal oxidation. However, the amount of energy released tends to be limited by the dense surface oxide (Al2O3) layer of the powder. Hence, a prerequisite for improving the reactivity of passivated Al particles is to remove the Al2O3 film from the surface. Considering that the self-propagating high-temperature synthesis (SHS) reaction of Ni and Al can generate additional exothermic heat in Al powder, Ni can be considered as a promising alternative to the surface oxide layer. Here, we report oxide-layer-free fine Al particles with a characteristic Ni/Al interface, where a Ni layer replaces the Al2O3 film. The microstructure of the synthesized powder consists of a 200-nm-thick Ni layer homogeneously coated on the Al surface, which has nanosized craters caused by the geometrical removal of Al2O3. Thermal analysis and in-situ heating transmission electron microscopy (TEM) results clearly show that active interdiffusion of atoms through the Ni/Al interface results in the formation of intermetallic compounds to provide additional exothermic energy, compared to the result for simply mixing Ni and Al powders. Hence, these findings provide new routes for the design and application of reactive metallic particles using the SHS reaction.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-36760-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "9"
          }
        ], 
        "name": "Self-Propagating Heat Synthetic Reactivity of Fine Aluminum Particles via Spontaneously Coated Nickel Layer", 
        "pagination": "1033", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b2d6049642b80fb60887643e0bc60e9c21072352b530b8f8dd3f845db0a31e22"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30705301"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-36760-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1111777445"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-36760-y", 
          "https://app.dimensions.ai/details/publication/pub.1111777445"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000329_0000000329/records_74668_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-36760-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36760-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36760-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36760-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36760-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-36760-y schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nc0c61f8b901e475b8d47a348bd3d43fb
    4 schema:citation sg:pub.10.1038/s41598-017-04758-7
    5 sg:pub.10.3103/s1061386212010086
    6 https://app.dimensions.ai/details/publication/pub.1106520936
    7 https://doi.org/10.1002/adem.201400151
    8 https://doi.org/10.1016/j.actamat.2003.08.018
    9 https://doi.org/10.1016/j.apsusc.2013.10.031
    10 https://doi.org/10.1016/j.apsusc.2016.11.056
    11 https://doi.org/10.1016/j.msea.2006.08.106
    12 https://doi.org/10.1016/j.surfcoat.2008.11.017
    13 https://doi.org/10.1016/j.surfcoat.2012.06.095
    14 https://doi.org/10.1016/j.surfcoat.2015.01.056
    15 https://doi.org/10.1016/s0921-5093(00)01407-6
    16 https://doi.org/10.1016/s0966-9795(01)00109-1
    17 https://doi.org/10.1021/acsami.5b00891
    18 https://doi.org/10.1021/acsami.5b05238
    19 https://doi.org/10.1021/am404583h
    20 https://doi.org/10.1021/am4058138
    21 https://doi.org/10.1021/am5012707
    22 https://doi.org/10.1021/am900757r
    23 https://doi.org/10.1021/cm047931k
    24 https://doi.org/10.1021/jp308620t
    25 https://doi.org/10.1021/la901822h
    26 https://doi.org/10.1021/nl400590k
    27 https://doi.org/10.1039/c3ta11603d
    28 https://doi.org/10.1063/1.3485673
    29 https://doi.org/10.1103/physrevb.59.14271
    30 https://doi.org/10.1615/intjenergeticmaterialschemprop.2012001355
    31 schema:datePublished 2019-12
    32 schema:datePublishedReg 2019-12-01
    33 schema:description Aluminum powders are known to provide outstanding volumetric exothermic enthalpy energy during thermal oxidation. However, the amount of energy released tends to be limited by the dense surface oxide (Al<sub>2</sub>O<sub>3</sub>) layer of the powder. Hence, a prerequisite for improving the reactivity of passivated Al particles is to remove the Al<sub>2</sub>O<sub>3</sub> film from the surface. Considering that the self-propagating high-temperature synthesis (SHS) reaction of Ni and Al can generate additional exothermic heat in Al powder, Ni can be considered as a promising alternative to the surface oxide layer. Here, we report oxide-layer-free fine Al particles with a characteristic Ni/Al interface, where a Ni layer replaces the Al<sub>2</sub>O<sub>3</sub> film. The microstructure of the synthesized powder consists of a 200-nm-thick Ni layer homogeneously coated on the Al surface, which has nanosized craters caused by the geometrical removal of Al<sub>2</sub>O<sub>3</sub>. Thermal analysis and in-situ heating transmission electron microscopy (TEM) results clearly show that active interdiffusion of atoms through the Ni/Al interface results in the formation of intermetallic compounds to provide additional exothermic energy, compared to the result for simply mixing Ni and Al powders. Hence, these findings provide new routes for the design and application of reactive metallic particles using the SHS reaction.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N333965f2a45341ba8704b7324d6b9234
    38 N4abdcd687bb9471b9a69ff6c6e54368b
    39 sg:journal.1045337
    40 schema:name Self-Propagating Heat Synthetic Reactivity of Fine Aluminum Particles via Spontaneously Coated Nickel Layer
    41 schema:pagination 1033
    42 schema:productId N07866ea028ca44529f143a648e01b9cb
    43 N1f525c568a994f2e9b5c90af72128580
    44 N263148b3c0674442b2b93fce1cafbdec
    45 N40fdcf923b374bcea9ba6cb5d9d4ddb3
    46 Nac830b66c97f48eaa0ead88e1847a47b
    47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111777445
    48 https://doi.org/10.1038/s41598-018-36760-y
    49 schema:sdDatePublished 2019-04-11T09:00
    50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    51 schema:sdPublisher N5fe0e0cb50ef42d096cdffb7044646db
    52 schema:url https://www.nature.com/articles/s41598-018-36760-y
    53 sgo:license sg:explorer/license/
    54 sgo:sdDataset articles
    55 rdf:type schema:ScholarlyArticle
    56 N0697eba261ed441695157aadf5380813 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
    57 schema:familyName Song
    58 schema:givenName Kyung
    59 rdf:type schema:Person
    60 N07866ea028ca44529f143a648e01b9cb schema:name dimensions_id
    61 schema:value pub.1111777445
    62 rdf:type schema:PropertyValue
    63 N1f525c568a994f2e9b5c90af72128580 schema:name readcube_id
    64 schema:value b2d6049642b80fb60887643e0bc60e9c21072352b530b8f8dd3f845db0a31e22
    65 rdf:type schema:PropertyValue
    66 N20e8770117a9465095d42707fe61ef95 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
    67 schema:familyName Kim
    68 schema:givenName Kyung Tae
    69 rdf:type schema:Person
    70 N263148b3c0674442b2b93fce1cafbdec schema:name pubmed_id
    71 schema:value 30705301
    72 rdf:type schema:PropertyValue
    73 N26a96d18f4ea40c780e03d62fb60e870 rdf:first N43469fdd69a24ca2a85775ca33c78707
    74 rdf:rest rdf:nil
    75 N333965f2a45341ba8704b7324d6b9234 schema:volumeNumber 9
    76 rdf:type schema:PublicationVolume
    77 N40fdcf923b374bcea9ba6cb5d9d4ddb3 schema:name nlm_unique_id
    78 schema:value 101563288
    79 rdf:type schema:PropertyValue
    80 N43469fdd69a24ca2a85775ca33c78707 schema:affiliation https://www.grid.ac/institutes/grid.258803.4
    81 schema:familyName Son
    82 schema:givenName Injoon
    83 rdf:type schema:Person
    84 N4abdcd687bb9471b9a69ff6c6e54368b schema:issueNumber 1
    85 rdf:type schema:PublicationIssue
    86 N4c02cdd101e940e9af4e5faedc0d59b2 rdf:first N20e8770117a9465095d42707fe61ef95
    87 rdf:rest N8a805927f8554c17bd8f831924c0414a
    88 N570a063b4f2941c3912e90a50bc3f086 schema:affiliation https://www.grid.ac/institutes/grid.410902.e
    89 schema:familyName Kwon
    90 schema:givenName Gu Hyun
    91 rdf:type schema:Person
    92 N5fe0e0cb50ef42d096cdffb7044646db schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N8a805927f8554c17bd8f831924c0414a rdf:first N570a063b4f2941c3912e90a50bc3f086
    95 rdf:rest Nfc748f519c144791b48391140329b555
    96 Nac830b66c97f48eaa0ead88e1847a47b schema:name doi
    97 schema:value 10.1038/s41598-018-36760-y
    98 rdf:type schema:PropertyValue
    99 Nc0c61f8b901e475b8d47a348bd3d43fb rdf:first Ndbf20668217944e882989732fcd7af3f
    100 rdf:rest N4c02cdd101e940e9af4e5faedc0d59b2
    101 Ndbf20668217944e882989732fcd7af3f schema:affiliation https://www.grid.ac/institutes/grid.410902.e
    102 schema:familyName Kim
    103 schema:givenName Dong Won
    104 rdf:type schema:Person
    105 Nfc748f519c144791b48391140329b555 rdf:first N0697eba261ed441695157aadf5380813
    106 rdf:rest N26a96d18f4ea40c780e03d62fb60e870
    107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Engineering
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Materials Engineering
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1045337 schema:issn 2045-2322
    114 schema:name Scientific Reports
    115 rdf:type schema:Periodical
    116 sg:pub.10.1038/s41598-017-04758-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090344096
    117 https://doi.org/10.1038/s41598-017-04758-7
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.3103/s1061386212010086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029170618
    120 https://doi.org/10.3103/s1061386212010086
    121 rdf:type schema:CreativeWork
    122 https://app.dimensions.ai/details/publication/pub.1106520936 schema:CreativeWork
    123 https://doi.org/10.1002/adem.201400151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053211262
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1016/j.actamat.2003.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035325745
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1016/j.apsusc.2013.10.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002085723
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1016/j.apsusc.2016.11.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005680951
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/j.msea.2006.08.106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007106141
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.surfcoat.2008.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024375667
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/j.surfcoat.2012.06.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010376858
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/j.surfcoat.2015.01.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014612844
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1016/s0921-5093(00)01407-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023490434
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1016/s0966-9795(01)00109-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048959787
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1021/acsami.5b00891 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055126474
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1021/acsami.5b05238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055127593
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1021/am404583h schema:sameAs https://app.dimensions.ai/details/publication/pub.1055144632
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1021/am4058138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055144978
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1021/am5012707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052004191
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1021/am900757r schema:sameAs https://app.dimensions.ai/details/publication/pub.1055147932
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1021/cm047931k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055410618
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1021/jp308620t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056091521
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1021/la901822h schema:sameAs https://app.dimensions.ai/details/publication/pub.1056165250
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1021/nl400590k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219981
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1039/c3ta11603d schema:sameAs https://app.dimensions.ai/details/publication/pub.1008951227
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1063/1.3485673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057960230
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1103/physrevb.59.14271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591149
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1615/intjenergeticmaterialschemprop.2012001355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068137941
    170 rdf:type schema:CreativeWork
    171 https://www.grid.ac/institutes/grid.258803.4 schema:alternateName Kyungpook National University
    172 schema:name Kyungpook National University, 80 Daehakro, 41566, Buk-gu, Daegu, Republic of Korea
    173 rdf:type schema:Organization
    174 https://www.grid.ac/institutes/grid.410902.e schema:alternateName Korea Institute of Materials Science
    175 schema:name Korea Institute of Materials Science, 797 Changwondaero, Seongsan-gu, 51508, Changwon, Gyeongnam, Republic of Korea
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...