Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Juan Zhao, QiPing Feng, Patrick Wu, Roxana A. Lupu, Russell A. Wilke, Quinn S. Wells, Joshua C. Denny, Wei-Qi Wei

ABSTRACT

Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available. More... »

PAGES

717

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x

DOI

http://dx.doi.org/10.1038/s41598-018-36745-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111638643

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30679510


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Juan", 
        "id": "sg:person.07463566132.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463566132.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "QiPing", 
        "id": "sg:person.0615407537.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615407537.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University", 
          "id": "https://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA", 
            "Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Patrick", 
        "id": "sg:person.015437372132.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437372132.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lupu", 
        "givenName": "Roxana A.", 
        "id": "sg:person.015503720711.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015503720711.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wilke", 
        "givenName": "Russell A.", 
        "id": "sg:person.016424047104.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016424047104.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wells", 
        "givenName": "Quinn S.", 
        "id": "sg:person.01235557755.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235557755.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA", 
            "Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denny", 
        "givenName": "Joshua C.", 
        "id": "sg:person.015734107537.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734107537.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vanderbilt University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.412807.8", 
          "name": [
            "Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wei", 
        "givenName": "Wei-Qi", 
        "id": "sg:person.014306646240.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306646240.53"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/jama.290.7.898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003220926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmra0906948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005376580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2008.09.098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007697822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jamia/ocw112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007784435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1197/jamia.m3294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008044720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010020120", 
          "https://doi.org/10.1038/nature14539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0118432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/713827181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013727705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2014.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015250519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa1605086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018194617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-016-1636-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019524792", 
          "https://doi.org/10.1007/s00439-016-1636-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-016-1636-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019524792", 
          "https://doi.org/10.1007/s00439-016-1636-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2012.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024728957", 
          "https://doi.org/10.1038/clpt.2012.66"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/bmj.39609.449676.25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025756262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orcp.2010.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037128817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijmedinf.2012.05.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038571370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/heartjnl-2013-304474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040676899"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041209717", 
          "https://doi.org/10.1038/ng.3437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-015-0166-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043283986", 
          "https://doi.org/10.1186/s13073-015-0166-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13073-015-0166-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043283986", 
          "https://doi.org/10.1186/s13073-015-0166-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.107.699579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043867491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2013.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047416915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacc.2013.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047416915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/amiajnl-2011-000597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050811963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2015.2423560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.str.28.3.557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063342293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1210/jc.2010-3011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064292638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/cir.0000000000000485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079401866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0174944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084512338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacl.2017.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084527405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jcpt.12527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085015676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/eurheartj/ehx250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085346439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0175508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090374190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cyto.2017.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090594957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tai.1995.479783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094009676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamacardio.2018.0022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101266157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamacardio.2018.0022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101266157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pmed.1002546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101840994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.117.031356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103672058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.117.031356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103672058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circulationaha.117.031356", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103672058"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36745-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2522163", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2684127", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2418317", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2669342", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691257", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2683740", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5475282", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2545622", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2705238", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2681197", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6618186", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4102220", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4242589", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction", 
    "pagination": "717", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2e918d94e2ccba06deb5a3708f9698f791a23c2a4d0899a14caf3b9b6c5d103a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30679510"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36745-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111638643"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36745-x", 
      "https://app.dimensions.ai/details/publication/pub.1111638643"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68438_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36745-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36745-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N9e0cc478bcbb4245bf56a86600a7de58
4 schema:citation sg:pub.10.1007/s00439-016-1636-z
5 sg:pub.10.1038/clpt.2012.66
6 sg:pub.10.1038/nature14539
7 sg:pub.10.1038/ng.3437
8 sg:pub.10.1186/s13073-015-0166-y
9 https://doi.org/10.1001/jama.290.7.898
10 https://doi.org/10.1001/jamacardio.2018.0022
11 https://doi.org/10.1016/j.amjcard.2008.09.098
12 https://doi.org/10.1016/j.cyto.2017.05.013
13 https://doi.org/10.1016/j.ijmedinf.2012.05.015
14 https://doi.org/10.1016/j.jacc.2013.11.005
15 https://doi.org/10.1016/j.jacl.2017.03.019
16 https://doi.org/10.1016/j.jbi.2014.11.005
17 https://doi.org/10.1016/j.orcp.2010.03.001
18 https://doi.org/10.1056/nejmoa1605086
19 https://doi.org/10.1056/nejmra0906948
20 https://doi.org/10.1080/713827181
21 https://doi.org/10.1093/eurheartj/ehx250
22 https://doi.org/10.1093/jamia/ocw112
23 https://doi.org/10.1109/tai.1995.479783
24 https://doi.org/10.1109/tip.2015.2423560
25 https://doi.org/10.1111/jcpt.12527
26 https://doi.org/10.1136/amiajnl-2011-000597
27 https://doi.org/10.1136/bmj.39609.449676.25
28 https://doi.org/10.1136/heartjnl-2013-304474
29 https://doi.org/10.1161/01.str.28.3.557
30 https://doi.org/10.1161/cir.0000000000000485
31 https://doi.org/10.1161/circulationaha.107.699579
32 https://doi.org/10.1161/circulationaha.117.031356
33 https://doi.org/10.1162/neco.1997.9.8.1735
34 https://doi.org/10.1197/jamia.m3294
35 https://doi.org/10.1210/jc.2010-3011
36 https://doi.org/10.1371/journal.pmed.1002546
37 https://doi.org/10.1371/journal.pone.0118432
38 https://doi.org/10.1371/journal.pone.0174944
39 https://doi.org/10.1371/journal.pone.0175508
40 schema:datePublished 2019-12
41 schema:datePublishedReg 2019-12-01
42 schema:description Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N583e5e623bd5427fa4a207eb04cbd2a4
47 N598d9f1315c74e108ed467abfbd31f0d
48 sg:journal.1045337
49 schema:name Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction
50 schema:pagination 717
51 schema:productId N2aa5d630c1d942a3a905eac50c064ce4
52 N9ffb2f2437904cf9ae0688b9a233d9b9
53 Na9a64a07c33c4bb49adb8b9a58d0fd49
54 Nbf498b9949ad4dd6b7b7420e25582fbb
55 Nff753b9c049e48f28f94b82c0fe0b6f6
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111638643
57 https://doi.org/10.1038/s41598-018-36745-x
58 schema:sdDatePublished 2019-04-11T08:58
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Ne14327fab3434572a55168faf3c1c1b3
61 schema:url https://www.nature.com/articles/s41598-018-36745-x
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N1f9145aaff1e4ebeaa850e6653e93870 rdf:first sg:person.015734107537.38
66 rdf:rest N73f960177b244443ba2a596fe1252ed8
67 N2aa5d630c1d942a3a905eac50c064ce4 schema:name readcube_id
68 schema:value 2e918d94e2ccba06deb5a3708f9698f791a23c2a4d0899a14caf3b9b6c5d103a
69 rdf:type schema:PropertyValue
70 N57a271c1b3ff4a34a7c80fd0c857ad73 rdf:first sg:person.0615407537.54
71 rdf:rest Ne4057bdc07e54a11b98ea26a9217129d
72 N583e5e623bd5427fa4a207eb04cbd2a4 schema:volumeNumber 9
73 rdf:type schema:PublicationVolume
74 N598d9f1315c74e108ed467abfbd31f0d schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N6099030b88b84e97b25547362ba569ad schema:name Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
77 rdf:type schema:Organization
78 N73f960177b244443ba2a596fe1252ed8 rdf:first sg:person.014306646240.53
79 rdf:rest rdf:nil
80 N762840b657ce49c880737bdc306c3ff2 rdf:first sg:person.015503720711.47
81 rdf:rest Nd09db3ef52e343829deb78304857347c
82 N8b389fe6bbf742ca8a37cf3116d6a72a schema:name Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
83 rdf:type schema:Organization
84 N9e0cc478bcbb4245bf56a86600a7de58 rdf:first sg:person.07463566132.01
85 rdf:rest N57a271c1b3ff4a34a7c80fd0c857ad73
86 N9ffb2f2437904cf9ae0688b9a233d9b9 schema:name dimensions_id
87 schema:value pub.1111638643
88 rdf:type schema:PropertyValue
89 Na9a64a07c33c4bb49adb8b9a58d0fd49 schema:name doi
90 schema:value 10.1038/s41598-018-36745-x
91 rdf:type schema:PropertyValue
92 Nbf498b9949ad4dd6b7b7420e25582fbb schema:name pubmed_id
93 schema:value 30679510
94 rdf:type schema:PropertyValue
95 Ncee712835eae4d04bbca8a29dda26062 rdf:first sg:person.01235557755.60
96 rdf:rest N1f9145aaff1e4ebeaa850e6653e93870
97 Nd09db3ef52e343829deb78304857347c rdf:first sg:person.016424047104.23
98 rdf:rest Ncee712835eae4d04bbca8a29dda26062
99 Ne14327fab3434572a55168faf3c1c1b3 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Ne4057bdc07e54a11b98ea26a9217129d rdf:first sg:person.015437372132.68
102 rdf:rest N762840b657ce49c880737bdc306c3ff2
103 Nff753b9c049e48f28f94b82c0fe0b6f6 schema:name nlm_unique_id
104 schema:value 101563288
105 rdf:type schema:PropertyValue
106 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
107 schema:name Information and Computing Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
110 schema:name Artificial Intelligence and Image Processing
111 rdf:type schema:DefinedTerm
112 sg:grant.2418317 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
113 rdf:type schema:MonetaryGrant
114 sg:grant.2522163 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
115 rdf:type schema:MonetaryGrant
116 sg:grant.2545622 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
117 rdf:type schema:MonetaryGrant
118 sg:grant.2669342 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
119 rdf:type schema:MonetaryGrant
120 sg:grant.2681197 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
121 rdf:type schema:MonetaryGrant
122 sg:grant.2683740 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
123 rdf:type schema:MonetaryGrant
124 sg:grant.2684127 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
125 rdf:type schema:MonetaryGrant
126 sg:grant.2691257 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
127 rdf:type schema:MonetaryGrant
128 sg:grant.2705238 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
129 rdf:type schema:MonetaryGrant
130 sg:grant.4102220 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
131 rdf:type schema:MonetaryGrant
132 sg:grant.4242589 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
133 rdf:type schema:MonetaryGrant
134 sg:grant.5475282 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
135 rdf:type schema:MonetaryGrant
136 sg:grant.6618186 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36745-x
137 rdf:type schema:MonetaryGrant
138 sg:journal.1045337 schema:issn 2045-2322
139 schema:name Scientific Reports
140 rdf:type schema:Periodical
141 sg:person.01235557755.60 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
142 schema:familyName Wells
143 schema:givenName Quinn S.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235557755.60
145 rdf:type schema:Person
146 sg:person.014306646240.53 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
147 schema:familyName Wei
148 schema:givenName Wei-Qi
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306646240.53
150 rdf:type schema:Person
151 sg:person.015437372132.68 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
152 schema:familyName Wu
153 schema:givenName Patrick
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437372132.68
155 rdf:type schema:Person
156 sg:person.015503720711.47 schema:affiliation N8b389fe6bbf742ca8a37cf3116d6a72a
157 schema:familyName Lupu
158 schema:givenName Roxana A.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015503720711.47
160 rdf:type schema:Person
161 sg:person.015734107537.38 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
162 schema:familyName Denny
163 schema:givenName Joshua C.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734107537.38
165 rdf:type schema:Person
166 sg:person.016424047104.23 schema:affiliation N6099030b88b84e97b25547362ba569ad
167 schema:familyName Wilke
168 schema:givenName Russell A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016424047104.23
170 rdf:type schema:Person
171 sg:person.0615407537.54 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
172 schema:familyName Feng
173 schema:givenName QiPing
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615407537.54
175 rdf:type schema:Person
176 sg:person.07463566132.01 schema:affiliation https://www.grid.ac/institutes/grid.412807.8
177 schema:familyName Zhao
178 schema:givenName Juan
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463566132.01
180 rdf:type schema:Person
181 sg:pub.10.1007/s00439-016-1636-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1019524792
182 https://doi.org/10.1007/s00439-016-1636-z
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/clpt.2012.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024728957
185 https://doi.org/10.1038/clpt.2012.66
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nature14539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
188 https://doi.org/10.1038/nature14539
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/ng.3437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041209717
191 https://doi.org/10.1038/ng.3437
192 rdf:type schema:CreativeWork
193 sg:pub.10.1186/s13073-015-0166-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1043283986
194 https://doi.org/10.1186/s13073-015-0166-y
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1001/jama.290.7.898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003220926
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1001/jamacardio.2018.0022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101266157
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.amjcard.2008.09.098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007697822
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.cyto.2017.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090594957
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.ijmedinf.2012.05.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038571370
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/j.jacc.2013.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047416915
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/j.jacl.2017.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084527405
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/j.jbi.2014.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015250519
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/j.orcp.2010.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037128817
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1056/nejmoa1605086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018194617
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1056/nejmra0906948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005376580
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1080/713827181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013727705
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1093/eurheartj/ehx250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085346439
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1093/jamia/ocw112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007784435
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/tai.1995.479783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094009676
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/tip.2015.2423560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644366
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1111/jcpt.12527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085015676
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1136/amiajnl-2011-000597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050811963
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1136/bmj.39609.449676.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025756262
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1136/heartjnl-2013-304474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040676899
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1161/01.str.28.3.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063342293
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1161/cir.0000000000000485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079401866
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1161/circulationaha.107.699579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043867491
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1161/circulationaha.117.031356 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103672058
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1197/jamia.m3294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008044720
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1210/jc.2010-3011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064292638
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1371/journal.pmed.1002546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101840994
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pone.0118432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273932
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0174944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084512338
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1371/journal.pone.0175508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090374190
257 rdf:type schema:CreativeWork
258 https://www.grid.ac/institutes/grid.152326.1 schema:alternateName Vanderbilt University
259 schema:name Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
260 Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
261 rdf:type schema:Organization
262 https://www.grid.ac/institutes/grid.412807.8 schema:alternateName Vanderbilt University Medical Center
263 schema:name Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
264 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
265 Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...