Ontology type: schema:ScholarlyArticle Open Access: True
2019-12
AUTHORSJuan Zhao, QiPing Feng, Patrick Wu, Roxana A. Lupu, Russell A. Wilke, Quinn S. Wells, Joshua C. Denny, Wei-Qi Wei
ABSTRACTCurrent approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available. More... »
PAGES717
http://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x
DOIhttp://dx.doi.org/10.1038/s41598-018-36745-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111638643
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30679510
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Artificial Intelligence and Image Processing",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Vanderbilt University Medical Center",
"id": "https://www.grid.ac/institutes/grid.412807.8",
"name": [
"Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA"
],
"type": "Organization"
},
"familyName": "Zhao",
"givenName": "Juan",
"id": "sg:person.07463566132.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463566132.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vanderbilt University Medical Center",
"id": "https://www.grid.ac/institutes/grid.412807.8",
"name": [
"Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA"
],
"type": "Organization"
},
"familyName": "Feng",
"givenName": "QiPing",
"id": "sg:person.0615407537.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615407537.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vanderbilt University",
"id": "https://www.grid.ac/institutes/grid.152326.1",
"name": [
"Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA",
"Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA"
],
"type": "Organization"
},
"familyName": "Wu",
"givenName": "Patrick",
"id": "sg:person.015437372132.68",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437372132.68"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA"
],
"type": "Organization"
},
"familyName": "Lupu",
"givenName": "Roxana A.",
"id": "sg:person.015503720711.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015503720711.47"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Department of Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA"
],
"type": "Organization"
},
"familyName": "Wilke",
"givenName": "Russell A.",
"id": "sg:person.016424047104.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016424047104.23"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vanderbilt University Medical Center",
"id": "https://www.grid.ac/institutes/grid.412807.8",
"name": [
"Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA"
],
"type": "Organization"
},
"familyName": "Wells",
"givenName": "Quinn S.",
"id": "sg:person.01235557755.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235557755.60"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vanderbilt University Medical Center",
"id": "https://www.grid.ac/institutes/grid.412807.8",
"name": [
"Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA",
"Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA"
],
"type": "Organization"
},
"familyName": "Denny",
"givenName": "Joshua C.",
"id": "sg:person.015734107537.38",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015734107537.38"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Vanderbilt University Medical Center",
"id": "https://www.grid.ac/institutes/grid.412807.8",
"name": [
"Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA"
],
"type": "Organization"
},
"familyName": "Wei",
"givenName": "Wei-Qi",
"id": "sg:person.014306646240.53",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014306646240.53"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1001/jama.290.7.898",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003220926"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejmra0906948",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005376580"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.amjcard.2008.09.098",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007697822"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/jamia/ocw112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007784435"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1197/jamia.m3294",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008044720"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature14539",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1010020120",
"https://doi.org/10.1038/nature14539"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0118432",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1012273932"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/713827181",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1013727705"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jbi.2014.11.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015250519"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1056/nejmoa1605086",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018194617"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00439-016-1636-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019524792",
"https://doi.org/10.1007/s00439-016-1636-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00439-016-1636-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019524792",
"https://doi.org/10.1007/s00439-016-1636-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/clpt.2012.66",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024728957",
"https://doi.org/10.1038/clpt.2012.66"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1136/bmj.39609.449676.25",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025756262"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.orcp.2010.03.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037128817"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/neco.1997.9.8.1735",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038140272"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.ijmedinf.2012.05.015",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038571370"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1136/heartjnl-2013-304474",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040676899"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/ng.3437",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041209717",
"https://doi.org/10.1038/ng.3437"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13073-015-0166-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043283986",
"https://doi.org/10.1186/s13073-015-0166-y"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/s13073-015-0166-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043283986",
"https://doi.org/10.1186/s13073-015-0166-y"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circulationaha.107.699579",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043867491"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2013.11.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047416915"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacc.2013.11.005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047416915"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1136/amiajnl-2011-000597",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050811963"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tip.2015.2423560",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1061644366"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/01.str.28.3.557",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1063342293"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1210/jc.2010-3011",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1064292638"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/cir.0000000000000485",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1079401866"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/cir.0000000000000485",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1079401866"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/cir.0000000000000485",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1079401866"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0174944",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084512338"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jacl.2017.03.019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084527405"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/jcpt.12527",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085015676"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/eurheartj/ehx250",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1085346439"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pone.0175508",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090374190"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cyto.2017.05.013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1090594957"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1109/tai.1995.479783",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1094009676"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1001/jamacardio.2018.0022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101266157"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1001/jamacardio.2018.0022",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101266157"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pmed.1002546",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1101840994"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circulationaha.117.031356",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103672058"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circulationaha.117.031356",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103672058"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1161/circulationaha.117.031356",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1103672058"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12",
"datePublishedReg": "2019-12-01",
"description": "Current approaches to predicting a cardiovascular disease (CVD) event rely on conventional risk factors and cross-sectional data. In this study, we applied machine learning and deep learning models to 10-year CVD event prediction by using longitudinal electronic health record (EHR) and genetic data. Our study cohort included 109, 490 individuals. In the first experiment, we extracted aggregated and longitudinal features from EHR. We applied logistic regression, random forests, gradient boosting trees, convolutional neural networks (CNN) and recurrent neural networks with long short-term memory (LSTM) units. In the second experiment, we applied a late-fusion approach to incorporate genetic features. We compared the performance with approaches currently utilized in routine clinical practice - American College of Cardiology and the American Heart Association (ACC/AHA) Pooled Cohort Risk Equation. Our results indicated that incorporating longitudinal feature lead to better event prediction. Combining genetic features through a late-fusion approach can further improve CVD prediction, underscoring the importance of integrating relevant genetic data whenever available.",
"genre": "research_article",
"id": "sg:pub.10.1038/s41598-018-36745-x",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.2522163",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2684127",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2418317",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2669342",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2691257",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2683740",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.5475282",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2545622",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2705238",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.2681197",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.6618186",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.4102220",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.4242589",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction",
"pagination": "717",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"2e918d94e2ccba06deb5a3708f9698f791a23c2a4d0899a14caf3b9b6c5d103a"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30679510"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101563288"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-018-36745-x"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111638643"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-018-36745-x",
"https://app.dimensions.ai/details/publication/pub.1111638643"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T08:58",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68438_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/s41598-018-36745-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36745-x'
This table displays all metadata directly associated to this object as RDF triples.
266 TRIPLES
21 PREDICATES
65 URIs
21 LITERALS
9 BLANK NODES