Proposed mechanism for the length dependence of the force developed in maximally activated muscles View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-02-04

AUTHORS

Lorenzo Marcucci, Takumi Washio, Toshio Yanagida

ABSTRACT

The molecular bases of the Frank-Starling law of the heart and of its cellular counterpart, the length dependent activation (LDA), are largely unknown. However, the recent discovery of the thick filament activation, a second pathway beside the well-known calcium mediated thin filament activation, is promising for elucidating these mechanisms. The thick filament activation is mediated by the tension acting on it through the mechano-sensing (MS) mechanism and can be related to the LDA via the titin passive tension. Here, we propose a mechanism to explain the higher maximum tension at longer sarcomere lengths generated by a maximally activated muscle and test it in-silico with a single fiber and a ventricle model. The active tension distribution along the thick filament generates a reservoir of inactive motors at its free-end that can be activated by passive tension on a beat-to-beat timescale. The proposed mechanism is able to quantitatively account for the observed increment in tension at the fiber level, however, the ventricle model suggests that this component of the LDA is not crucial in physiological conditions. More... »

PAGES

1317

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36706-4

DOI

http://dx.doi.org/10.1038/s41598-018-36706-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111916571

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30718530


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Calcium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Heart", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardial Contraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myocardium", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sarcomeres", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke Volume", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, 565-0874, Suita, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Department of Biomedical Sciences, Padova University, Via Marzolo 3, 35131, Padova, Italy", 
            "Center for Mechanics of Biological Materials, Padova University, Via Marzolo 9, 35131, Padova, Italy", 
            "Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, 565-0874, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marcucci", 
        "givenName": "Lorenzo", 
        "id": "sg:person.016523732771.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016523732771.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561, Kashiwa-shi, Chiba-ken, Japan", 
          "id": "http://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561, Kashiwa-shi, Chiba-ken, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Washio", 
        "givenName": "Takumi", 
        "id": "sg:person.01163254214.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163254214.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, 565-0874, Suita, Osaka, Japan", 
          "id": "http://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, 565-0874, Suita, Osaka, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yanagida", 
        "givenName": "Toshio", 
        "id": "sg:person.015141357621.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-017-05999-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090637438", 
          "https://doi.org/10.1038/s41598-017-05999-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048610042", 
          "https://doi.org/10.1038/nature15727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035198044", 
          "https://doi.org/10.1038/ncomms13281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/i2010-10641-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024823842", 
          "https://doi.org/10.1140/epje/i2010-10641-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12551-017-0292-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091477877", 
          "https://doi.org/10.1007/s12551-017-0292-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/233533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050599860", 
          "https://doi.org/10.1038/233533a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-04", 
    "datePublishedReg": "2019-02-04", 
    "description": "The molecular bases of the Frank-Starling law of the heart and of its cellular counterpart, the length dependent activation (LDA), are largely unknown. However, the recent discovery of the thick filament activation, a second pathway beside the well-known calcium mediated thin filament activation, is promising for elucidating these mechanisms. The thick filament activation is mediated by the tension acting on it through the mechano-sensing (MS) mechanism and can be related to the LDA via the titin passive tension. Here, we propose a mechanism to explain the higher maximum tension at longer sarcomere lengths generated by a maximally activated muscle and test it in-silico with a single fiber and a ventricle model. The active tension distribution along the thick filament generates a reservoir of inactive motors at its free-end that can be activated by passive tension on a beat-to-beat timescale. The proposed mechanism is able to quantitatively account for the observed increment in tension at the fiber level, however, the ventricle model suggests that this component of the LDA is not crucial in physiological conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-36706-4", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "length-dependent activation", 
      "passive tension", 
      "Frank-Starling law", 
      "long sarcomere lengths", 
      "dependent activation", 
      "activation", 
      "muscle", 
      "cellular counterparts", 
      "filament activation", 
      "thin filament activation", 
      "sarcomere length", 
      "ventricle model", 
      "maximum tension", 
      "higher maximum tensions", 
      "molecular basis", 
      "fiber level", 
      "physiological conditions", 
      "recent discovery", 
      "heart", 
      "mechanism", 
      "beats", 
      "calcium", 
      "observed increment", 
      "second pathway", 
      "pathway", 
      "thick filaments", 
      "single fiber", 
      "levels", 
      "thick filament activation", 
      "silico", 
      "increment", 
      "discovery", 
      "tension", 
      "fibers", 
      "length", 
      "model", 
      "motor", 
      "counterparts", 
      "basis", 
      "components", 
      "conditions", 
      "filaments", 
      "distribution", 
      "reservoir", 
      "inactive motors", 
      "tension distribution", 
      "force", 
      "length dependence", 
      "dependence", 
      "timescales", 
      "law"
    ], 
    "name": "Proposed mechanism for the length dependence of the force developed in maximally activated muscles", 
    "pagination": "1317", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111916571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36706-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30718530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36706-4", 
      "https://app.dimensions.ai/details/publication/pub.1111916571"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_819.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-36706-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36706-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36706-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36706-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36706-4'


 

This table displays all metadata directly associated to this object as RDF triples.

190 TRIPLES      21 PREDICATES      91 URIs      77 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36706-4 schema:about N186ef402f3ff4de0ab3177ec52bd29d0
2 N37de0d94025147deb193ea0b99b99cd5
3 N3a1e6614ad44472db7ff539d2805f172
4 N460344c5872949258029d1d4e05cacd8
5 N8683231870224a019943e697acec4e2c
6 Naab144cce029479fa6b75a19240f80e0
7 Nba7879c6fdc14779a2e20198af350d1e
8 Neb444848128d4595a1df13c0f3ce50a0
9 Nfee3ff3212c4443c92ddbf3c1a695f4d
10 anzsrc-for:11
11 anzsrc-for:1109
12 schema:author N65b3fee71e194baaa81a1e737f611147
13 schema:citation sg:pub.10.1007/s12551-017-0292-4
14 sg:pub.10.1038/233533a0
15 sg:pub.10.1038/nature15727
16 sg:pub.10.1038/ncomms13281
17 sg:pub.10.1038/s41598-017-05999-2
18 sg:pub.10.1140/epje/i2010-10641-0
19 schema:datePublished 2019-02-04
20 schema:datePublishedReg 2019-02-04
21 schema:description The molecular bases of the Frank-Starling law of the heart and of its cellular counterpart, the length dependent activation (LDA), are largely unknown. However, the recent discovery of the thick filament activation, a second pathway beside the well-known calcium mediated thin filament activation, is promising for elucidating these mechanisms. The thick filament activation is mediated by the tension acting on it through the mechano-sensing (MS) mechanism and can be related to the LDA via the titin passive tension. Here, we propose a mechanism to explain the higher maximum tension at longer sarcomere lengths generated by a maximally activated muscle and test it in-silico with a single fiber and a ventricle model. The active tension distribution along the thick filament generates a reservoir of inactive motors at its free-end that can be activated by passive tension on a beat-to-beat timescale. The proposed mechanism is able to quantitatively account for the observed increment in tension at the fiber level, however, the ventricle model suggests that this component of the LDA is not crucial in physiological conditions.
22 schema:genre article
23 schema:isAccessibleForFree true
24 schema:isPartOf N744410e8ec9e48a78bd7b9f10e9c7d52
25 N8658e556d47a404f8c0ac4daa0d43e5c
26 sg:journal.1045337
27 schema:keywords Frank-Starling law
28 activation
29 basis
30 beats
31 calcium
32 cellular counterparts
33 components
34 conditions
35 counterparts
36 dependence
37 dependent activation
38 discovery
39 distribution
40 fiber level
41 fibers
42 filament activation
43 filaments
44 force
45 heart
46 higher maximum tensions
47 inactive motors
48 increment
49 law
50 length
51 length dependence
52 length-dependent activation
53 levels
54 long sarcomere lengths
55 maximum tension
56 mechanism
57 model
58 molecular basis
59 motor
60 muscle
61 observed increment
62 passive tension
63 pathway
64 physiological conditions
65 recent discovery
66 reservoir
67 sarcomere length
68 second pathway
69 silico
70 single fiber
71 tension
72 tension distribution
73 thick filament activation
74 thick filaments
75 thin filament activation
76 timescales
77 ventricle model
78 schema:name Proposed mechanism for the length dependence of the force developed in maximally activated muscles
79 schema:pagination 1317
80 schema:productId N3f7348e72cbd499fbf3cdd1cd6a3407f
81 N534a8b097c174c29a037b9f364b6d948
82 N85a49a60137041119c3f705e594e5b4f
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111916571
84 https://doi.org/10.1038/s41598-018-36706-4
85 schema:sdDatePublished 2022-08-04T17:07
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N3ef33ce38cb7402dab0a899653385fd3
88 schema:url https://doi.org/10.1038/s41598-018-36706-4
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N186ef402f3ff4de0ab3177ec52bd29d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Monte Carlo Method
94 rdf:type schema:DefinedTerm
95 N37de0d94025147deb193ea0b99b99cd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Myocardium
97 rdf:type schema:DefinedTerm
98 N3a1e6614ad44472db7ff539d2805f172 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Algorithms
100 rdf:type schema:DefinedTerm
101 N3ef33ce38cb7402dab0a899653385fd3 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 N3f7348e72cbd499fbf3cdd1cd6a3407f schema:name dimensions_id
104 schema:value pub.1111916571
105 rdf:type schema:PropertyValue
106 N460344c5872949258029d1d4e05cacd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Calcium
108 rdf:type schema:DefinedTerm
109 N534a8b097c174c29a037b9f364b6d948 schema:name doi
110 schema:value 10.1038/s41598-018-36706-4
111 rdf:type schema:PropertyValue
112 N65b3fee71e194baaa81a1e737f611147 rdf:first sg:person.016523732771.39
113 rdf:rest Nb45ae1680ed747adae36aa0da4e29025
114 N744410e8ec9e48a78bd7b9f10e9c7d52 schema:volumeNumber 9
115 rdf:type schema:PublicationVolume
116 N85a49a60137041119c3f705e594e5b4f schema:name pubmed_id
117 schema:value 30718530
118 rdf:type schema:PropertyValue
119 N8658e556d47a404f8c0ac4daa0d43e5c schema:issueNumber 1
120 rdf:type schema:PublicationIssue
121 N8683231870224a019943e697acec4e2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Models, Theoretical
123 rdf:type schema:DefinedTerm
124 Naab144cce029479fa6b75a19240f80e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Myocardial Contraction
126 rdf:type schema:DefinedTerm
127 Nb45ae1680ed747adae36aa0da4e29025 rdf:first sg:person.01163254214.58
128 rdf:rest Ne0f980cb3e164cd7b77fc7aed3fdbe63
129 Nba7879c6fdc14779a2e20198af350d1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Sarcomeres
131 rdf:type schema:DefinedTerm
132 Ne0f980cb3e164cd7b77fc7aed3fdbe63 rdf:first sg:person.015141357621.93
133 rdf:rest rdf:nil
134 Neb444848128d4595a1df13c0f3ce50a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Heart
136 rdf:type schema:DefinedTerm
137 Nfee3ff3212c4443c92ddbf3c1a695f4d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Stroke Volume
139 rdf:type schema:DefinedTerm
140 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
141 schema:name Medical and Health Sciences
142 rdf:type schema:DefinedTerm
143 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
144 schema:name Neurosciences
145 rdf:type schema:DefinedTerm
146 sg:journal.1045337 schema:issn 2045-2322
147 schema:name Scientific Reports
148 schema:publisher Springer Nature
149 rdf:type schema:Periodical
150 sg:person.01163254214.58 schema:affiliation grid-institutes:grid.26999.3d
151 schema:familyName Washio
152 schema:givenName Takumi
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163254214.58
154 rdf:type schema:Person
155 sg:person.015141357621.93 schema:affiliation grid-institutes:grid.7597.c
156 schema:familyName Yanagida
157 schema:givenName Toshio
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015141357621.93
159 rdf:type schema:Person
160 sg:person.016523732771.39 schema:affiliation grid-institutes:grid.7597.c
161 schema:familyName Marcucci
162 schema:givenName Lorenzo
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016523732771.39
164 rdf:type schema:Person
165 sg:pub.10.1007/s12551-017-0292-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091477877
166 https://doi.org/10.1007/s12551-017-0292-4
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/233533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050599860
169 https://doi.org/10.1038/233533a0
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature15727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048610042
172 https://doi.org/10.1038/nature15727
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ncomms13281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035198044
175 https://doi.org/10.1038/ncomms13281
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/s41598-017-05999-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090637438
178 https://doi.org/10.1038/s41598-017-05999-2
179 rdf:type schema:CreativeWork
180 sg:pub.10.1140/epje/i2010-10641-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024823842
181 https://doi.org/10.1140/epje/i2010-10641-0
182 rdf:type schema:CreativeWork
183 grid-institutes:grid.26999.3d schema:alternateName Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561, Kashiwa-shi, Chiba-ken, Japan
184 schema:name Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, 277-8561, Kashiwa-shi, Chiba-ken, Japan
185 rdf:type schema:Organization
186 grid-institutes:grid.7597.c schema:alternateName Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, 565-0874, Suita, Osaka, Japan
187 schema:name Center for Biosystems Dynamics Research, RIKEN, 6-2-3 Furuedai, 565-0874, Suita, Osaka, Japan
188 Center for Mechanics of Biological Materials, Padova University, Via Marzolo 9, 35131, Padova, Italy
189 Department of Biomedical Sciences, Padova University, Via Marzolo 3, 35131, Padova, Italy
190 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...