Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Beatriz Delgado, Alex Bach, Isabel Guasch, Carmen González, Guillermo Elcoso, Jennie E. Pryce, Oscar Gonzalez-Recio

ABSTRACT

The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n = 30) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production. The variability for the efficiency of feed utilization in ruminants is partially controlled by the gastrointestinal microbiota. Modulating the microbiota composition can promote a more sustainable and efficient livestock. This study revealed that most efficient cows had larger relative abundance of Bacteroidetes (P = 0.041) and Prevotella (P = 0.003), while lower, but non-significant (P = 0.119), relative abundance of Firmicutes. Methanobacteria (P = 0.004) and Methanobrevibacter (P = 0.003) were also less abundant in the high-efficiency cows. A de novo metagenome assembly was carried out using de Bruijn graphs in MEGAHIT resulting in 496,375 contigs. An agnostic pre-selection of microbial contigs allowed high classification accuracy for FE and intake levels using hierarchical classification. These microbial contigs were also able to predict FE and intake levels with accuracy of 0.19 and 0.39, respectively, in an independent population (n = 31). Nonetheless, a larger potential accuracy up to 0.69 was foreseen in this study for datasets that allowed a larger statistical power. Enrichment analyses showed that genes within these contigs were mainly involved in fatty acids and cellulose degradation pathways. The findings indicated that there are differences between the microbiota compositions of high and low-efficiency animals both at the taxonomical and gene levels. These differences are even more evident in terms of intake levels. Some of these differences remain even between populations under different diets and environments, and can provide information on the feed utilization performance without information on the individual intake level. More... »

PAGES

11

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36673-w

DOI

http://dx.doi.org/10.1038/s41598-018-36673-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111102187

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30626904


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5690.a", 
          "name": [
            "Escuela T\u00e9cnica Superior de Ingenier\u00eda Agron\u00f3mica, Alimentaria y de Biosistemas. UPM. Ciudad Universitaria s/n, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delgado", 
        "givenName": "Beatriz", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Research and Technology in Food and Agriculture", 
          "id": "https://www.grid.ac/institutes/grid.8581.4", 
          "name": [
            "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ants, ICREA, 08007, Barcelona, Spain", 
            "Department of Ruminant Production, IRTA, 08140, Caldes de Montbui, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bach", 
        "givenName": "Alex", 
        "id": "sg:person.0664523715.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664523715.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Blanca from the Pyrenees, 25795, Hostalets the Tost, Lleida, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guasch", 
        "givenName": "Isabel", 
        "id": "sg:person.011622215763.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622215763.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Investigaci\u00f3n y Tecnolog\u00eda Agraria y Alimentaria", 
          "id": "https://www.grid.ac/institutes/grid.419190.4", 
          "name": [
            "Departamento de Mejora Gen\u00e9tica Animal, Instituto Nacional de Investigaci\u00f3n y Tecnolog\u00eda Agraria y Alimentaria O.A., M.P, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonz\u00e1lez", 
        "givenName": "Carmen", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Blanca from the Pyrenees, 25795, Hostalets the Tost, Lleida, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Elcoso", 
        "givenName": "Guillermo", 
        "id": "sg:person.016254061744.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016254061744.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Environment, Land, Water and Planning", 
          "id": "https://www.grid.ac/institutes/grid.452205.4", 
          "name": [
            "Bioscience Research Division, ECODEV, 3038, Bundoora, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pryce", 
        "givenName": "Jennie E.", 
        "id": "sg:person.01276414035.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276414035.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto Nacional de Investigaci\u00f3n y Tecnolog\u00eda Agraria y Alimentaria", 
          "id": "https://www.grid.ac/institutes/grid.419190.4", 
          "name": [
            "Escuela T\u00e9cnica Superior de Ingenier\u00eda Agron\u00f3mica, Alimentaria y de Biosistemas. UPM. Ciudad Universitaria s/n, 28040, Madrid, Spain", 
            "Departamento de Mejora Gen\u00e9tica Animal, Instituto Nacional de Investigaci\u00f3n y Tecnolog\u00eda Agraria y Alimentaria O.A., M.P, 28040, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gonzalez-Recio", 
        "givenName": "Oscar", 
        "id": "sg:person.0736077044.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736077044.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/aem.00010-10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000295829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2013-7227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002026544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1002227681", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b137845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002227681", 
          "https://doi.org/10.1007/b137845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b137845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002227681", 
          "https://doi.org/10.1007/b137845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1003440853", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3247-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003440853", 
          "https://doi.org/10.1007/978-1-4757-3247-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3247-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003440853", 
          "https://doi.org/10.1007/978-1-4757-3247-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep14567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005996513", 
          "https://doi.org/10.1038/srep14567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0008926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006873837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008624939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2013-7515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008771850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2014-9257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010220580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2015.01313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013187939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0073056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013765795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1472-765x.2004.01566.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014755169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.09.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016883501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2007.00694.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017663403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1439-0388.2007.00694.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017663403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.3663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018819579", 
          "https://doi.org/10.1038/ng.3663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2015-9621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021021838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0923-2508(91)90040-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021660294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0923-2508(91)90040-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021660294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2015-9928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022362856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mgene.2014.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022958840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro.2016.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023858855", 
          "https://doi.org/10.1038/nrmicro.2016.83"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023893418", 
          "https://doi.org/10.1038/nature05414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.3176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023901695", 
          "https://doi.org/10.1038/nmeth.3176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-1453-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024549411", 
          "https://doi.org/10.1007/978-94-009-1453-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-009-1453-7_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024549411", 
          "https://doi.org/10.1007/978-94-009-1453-7_3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamasurg.2013.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025541249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.02815-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028974113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2016.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029409494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2016.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029409494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031501454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0085423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033816042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1462-2920.2011.02452.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034044386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0021800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034510199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.168245.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035646886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-13-30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038401648", 
          "https://doi.org/10.1186/1471-2180-13-30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1039435410", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2776-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039435410", 
          "https://doi.org/10.1007/978-1-4612-2776-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-2776-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039435410", 
          "https://doi.org/10.1007/978-1-4612-2776-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987283", 
          "https://doi.org/10.1038/nprot.2008.211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aem.00720-15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040690113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1005846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040745041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040779948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2009-2071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042026793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ismej.2013.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047947766", 
          "https://doi.org/10.1038/ismej.2013.2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/gutjnl-2016-312135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051673100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1052-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051802890", 
          "https://doi.org/10.1186/s13059-016-1052-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-016-1052-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051802890", 
          "https://doi.org/10.1186/s13059-016-1052-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12088-010-0061-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052897618", 
          "https://doi.org/10.1007/s12088-010-0061-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12088-010-0061-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052897618", 
          "https://doi.org/10.1007/s12088-010-0061-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1200387", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0884533615609896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063857759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0884533615609896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063857759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2527/jas.2012-5118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070888374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074795580", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077202427", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083299347", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.4197", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084129290", 
          "https://doi.org/10.1038/nmeth.4197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.117.200782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085317773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.117.200782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085317773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.117.200782", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085317773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/162578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090663661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/162578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090663661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/162578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090663661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2017.02445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099609553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2017-13179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099737216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3168/jds.2017-13179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099737216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.4110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101561769", 
          "https://doi.org/10.1038/nbt.4110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1996.tb02080.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458978"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n\u2009=\u200930) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production. The variability for the efficiency of feed utilization in ruminants is partially controlled by the gastrointestinal microbiota. Modulating the microbiota composition can promote a more sustainable and efficient livestock. This study revealed that most efficient cows had larger relative abundance of Bacteroidetes (P\u2009=\u20090.041) and Prevotella (P\u2009=\u20090.003), while lower, but non-significant (P\u2009=\u20090.119), relative abundance of Firmicutes. Methanobacteria (P\u2009=\u20090.004) and Methanobrevibacter (P\u2009=\u20090.003) were also less abundant in the high-efficiency cows. A de novo metagenome assembly was carried out using de Bruijn graphs in MEGAHIT resulting in 496,375 contigs. An agnostic pre-selection of microbial contigs allowed high classification accuracy for FE and intake levels using hierarchical classification. These microbial contigs were also able to predict FE and intake levels with accuracy of 0.19 and 0.39, respectively, in an independent population (n\u2009=\u200931). Nonetheless, a larger potential accuracy up to 0.69 was foreseen in this study for datasets that allowed a larger statistical power. Enrichment analyses showed that genes within these contigs were mainly involved in fatty acids and cellulose degradation pathways. The findings indicated that there are differences between the microbiota compositions of high and low-efficiency animals both at the taxonomical and gene levels. These differences are even more evident in terms of intake levels. Some of these differences remain even between populations under different diets and environments, and can provide information on the feed utilization performance without\u00a0information on the individual intake level.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36673-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle", 
    "pagination": "11", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2a728d573a6596b939a288f26fed78b1138a6cc805e6064b3cf5084da5782456"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30626904"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36673-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111102187"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36673-w", 
      "https://app.dimensions.ai/details/publication/pub.1111102187"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000315_0000000315/records_6336_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36673-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36673-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36673-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36673-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36673-w'


 

This table displays all metadata directly associated to this object as RDF triples.

307 TRIPLES      21 PREDICATES      87 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36673-w schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nde9f6c19c670496f912b58866ccca3c2
4 schema:citation sg:pub.10.1007/978-1-4612-2776-2
5 sg:pub.10.1007/978-1-4757-3247-4
6 sg:pub.10.1007/978-94-009-1453-7_3
7 sg:pub.10.1007/b137845
8 sg:pub.10.1007/s12088-010-0061-6
9 sg:pub.10.1038/ismej.2013.2
10 sg:pub.10.1038/nature05414
11 sg:pub.10.1038/nbt.4110
12 sg:pub.10.1038/ng.3663
13 sg:pub.10.1038/nmeth.3176
14 sg:pub.10.1038/nmeth.4197
15 sg:pub.10.1038/nprot.2008.211
16 sg:pub.10.1038/nrmicro.2016.83
17 sg:pub.10.1038/srep14567
18 sg:pub.10.1186/1471-2180-13-30
19 sg:pub.10.1186/s13059-016-1052-7
20 https://app.dimensions.ai/details/publication/pub.1002227681
21 https://app.dimensions.ai/details/publication/pub.1003440853
22 https://app.dimensions.ai/details/publication/pub.1039435410
23 https://app.dimensions.ai/details/publication/pub.1074795580
24 https://app.dimensions.ai/details/publication/pub.1077202427
25 https://app.dimensions.ai/details/publication/pub.1083299347
26 https://doi.org/10.1001/jamasurg.2013.5
27 https://doi.org/10.1016/0923-2508(91)90040-h
28 https://doi.org/10.1016/j.cell.2014.09.022
29 https://doi.org/10.1016/j.mgene.2014.01.001
30 https://doi.org/10.1016/j.ymeth.2016.02.020
31 https://doi.org/10.1093/bioinformatics/btl117
32 https://doi.org/10.1093/bioinformatics/btu153
33 https://doi.org/10.1101/162578
34 https://doi.org/10.1101/gr.168245.113
35 https://doi.org/10.1111/j.1439-0388.2007.00694.x
36 https://doi.org/10.1111/j.1462-2920.2011.02452.x
37 https://doi.org/10.1111/j.1472-765x.2004.01566.x
38 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
39 https://doi.org/10.1126/science.1200387
40 https://doi.org/10.1128/aem.00010-10
41 https://doi.org/10.1128/aem.00720-15
42 https://doi.org/10.1128/aem.02815-08
43 https://doi.org/10.1136/gutjnl-2016-312135
44 https://doi.org/10.1177/0884533615609896
45 https://doi.org/10.1371/journal.pcbi.1004957
46 https://doi.org/10.1371/journal.pgen.1005846
47 https://doi.org/10.1371/journal.pone.0008926
48 https://doi.org/10.1371/journal.pone.0021800
49 https://doi.org/10.1371/journal.pone.0073056
50 https://doi.org/10.1371/journal.pone.0085423
51 https://doi.org/10.1534/genetics.117.200782
52 https://doi.org/10.2527/jas.2012-5118
53 https://doi.org/10.3168/jds.2009-2071
54 https://doi.org/10.3168/jds.2013-7227
55 https://doi.org/10.3168/jds.2013-7515
56 https://doi.org/10.3168/jds.2014-9257
57 https://doi.org/10.3168/jds.2015-9621
58 https://doi.org/10.3168/jds.2015-9928
59 https://doi.org/10.3168/jds.2017-13179
60 https://doi.org/10.3389/fmicb.2015.01313
61 https://doi.org/10.3389/fmicb.2017.02445
62 schema:datePublished 2019-12
63 schema:datePublishedReg 2019-12-01
64 schema:description The current research was carried out to determine the associations between the rumen microbiota and traits related with feed efficiency in a Holstein cattle population (n = 30) using whole metagenome sequencing. Improving feed efficiency (FE) is important for a more sustainable livestock production. The variability for the efficiency of feed utilization in ruminants is partially controlled by the gastrointestinal microbiota. Modulating the microbiota composition can promote a more sustainable and efficient livestock. This study revealed that most efficient cows had larger relative abundance of Bacteroidetes (P = 0.041) and Prevotella (P = 0.003), while lower, but non-significant (P = 0.119), relative abundance of Firmicutes. Methanobacteria (P = 0.004) and Methanobrevibacter (P = 0.003) were also less abundant in the high-efficiency cows. A de novo metagenome assembly was carried out using de Bruijn graphs in MEGAHIT resulting in 496,375 contigs. An agnostic pre-selection of microbial contigs allowed high classification accuracy for FE and intake levels using hierarchical classification. These microbial contigs were also able to predict FE and intake levels with accuracy of 0.19 and 0.39, respectively, in an independent population (n = 31). Nonetheless, a larger potential accuracy up to 0.69 was foreseen in this study for datasets that allowed a larger statistical power. Enrichment analyses showed that genes within these contigs were mainly involved in fatty acids and cellulose degradation pathways. The findings indicated that there are differences between the microbiota compositions of high and low-efficiency animals both at the taxonomical and gene levels. These differences are even more evident in terms of intake levels. Some of these differences remain even between populations under different diets and environments, and can provide information on the feed utilization performance without information on the individual intake level.
65 schema:genre research_article
66 schema:inLanguage en
67 schema:isAccessibleForFree true
68 schema:isPartOf N5cff3c64a0844ca18de2ed1419c933a4
69 Nb6f9677718624656968b3ad82a6ac1f6
70 sg:journal.1045337
71 schema:name Whole rumen metagenome sequencing allows classifying and predicting feed efficiency and intake levels in cattle
72 schema:pagination 11
73 schema:productId N5d88c2f6ee264ebcb3e001d27091ab3a
74 Nb6767fc2b78443ae84b154c1a27fa8cd
75 Nd2738ca6eea2458a8bc7d02de808b3aa
76 Ne11f8549f84f498f8ca056d0f0496a79
77 Nf2a43ac3f23147f587272c02a30c0630
78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111102187
79 https://doi.org/10.1038/s41598-018-36673-w
80 schema:sdDatePublished 2019-04-11T08:37
81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
82 schema:sdPublisher N41f860150e7440ba8c30b5d5ea25973b
83 schema:url https://www.nature.com/articles/s41598-018-36673-w
84 sgo:license sg:explorer/license/
85 sgo:sdDataset articles
86 rdf:type schema:ScholarlyArticle
87 N050edd6156d3467787cdba6cc0755142 rdf:first sg:person.016254061744.33
88 rdf:rest N3142a093e7654759844a7789220b5e9b
89 N24f92ceea64e4627a889707148046bd3 rdf:first N70194e1de31445fe9ea02f497abee336
90 rdf:rest N050edd6156d3467787cdba6cc0755142
91 N2884707775e344cdab31c81dd2b48e57 schema:affiliation https://www.grid.ac/institutes/grid.5690.a
92 schema:familyName Delgado
93 schema:givenName Beatriz
94 rdf:type schema:Person
95 N3142a093e7654759844a7789220b5e9b rdf:first sg:person.01276414035.49
96 rdf:rest N46c46d4891f044c8b58ee9a7aece3c95
97 N41f860150e7440ba8c30b5d5ea25973b schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N46c46d4891f044c8b58ee9a7aece3c95 rdf:first sg:person.0736077044.09
100 rdf:rest rdf:nil
101 N5cff3c64a0844ca18de2ed1419c933a4 schema:volumeNumber 9
102 rdf:type schema:PublicationVolume
103 N5d88c2f6ee264ebcb3e001d27091ab3a schema:name doi
104 schema:value 10.1038/s41598-018-36673-w
105 rdf:type schema:PropertyValue
106 N6b71ca17f46b432b8dfe8a210bd10abe rdf:first sg:person.011622215763.08
107 rdf:rest N24f92ceea64e4627a889707148046bd3
108 N70194e1de31445fe9ea02f497abee336 schema:affiliation https://www.grid.ac/institutes/grid.419190.4
109 schema:familyName González
110 schema:givenName Carmen
111 rdf:type schema:Person
112 N9274c0945b914dd886a4b39bada025c1 schema:name Blanca from the Pyrenees, 25795, Hostalets the Tost, Lleida, Spain
113 rdf:type schema:Organization
114 Nb6767fc2b78443ae84b154c1a27fa8cd schema:name pubmed_id
115 schema:value 30626904
116 rdf:type schema:PropertyValue
117 Nb6f9677718624656968b3ad82a6ac1f6 schema:issueNumber 1
118 rdf:type schema:PublicationIssue
119 Nbae6dbf3bc5b4458bbd22d6579400547 rdf:first sg:person.0664523715.10
120 rdf:rest N6b71ca17f46b432b8dfe8a210bd10abe
121 Nd2738ca6eea2458a8bc7d02de808b3aa schema:name nlm_unique_id
122 schema:value 101563288
123 rdf:type schema:PropertyValue
124 Nde9f6c19c670496f912b58866ccca3c2 rdf:first N2884707775e344cdab31c81dd2b48e57
125 rdf:rest Nbae6dbf3bc5b4458bbd22d6579400547
126 Ne11f8549f84f498f8ca056d0f0496a79 schema:name dimensions_id
127 schema:value pub.1111102187
128 rdf:type schema:PropertyValue
129 Nec0d31932fac454fbc2e8b0294c6e9a5 schema:name Blanca from the Pyrenees, 25795, Hostalets the Tost, Lleida, Spain
130 rdf:type schema:Organization
131 Nf2a43ac3f23147f587272c02a30c0630 schema:name readcube_id
132 schema:value 2a728d573a6596b939a288f26fed78b1138a6cc805e6064b3cf5084da5782456
133 rdf:type schema:PropertyValue
134 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
135 schema:name Biological Sciences
136 rdf:type schema:DefinedTerm
137 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
138 schema:name Genetics
139 rdf:type schema:DefinedTerm
140 sg:journal.1045337 schema:issn 2045-2322
141 schema:name Scientific Reports
142 rdf:type schema:Periodical
143 sg:person.011622215763.08 schema:affiliation Nec0d31932fac454fbc2e8b0294c6e9a5
144 schema:familyName Guasch
145 schema:givenName Isabel
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011622215763.08
147 rdf:type schema:Person
148 sg:person.01276414035.49 schema:affiliation https://www.grid.ac/institutes/grid.452205.4
149 schema:familyName Pryce
150 schema:givenName Jennie E.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276414035.49
152 rdf:type schema:Person
153 sg:person.016254061744.33 schema:affiliation N9274c0945b914dd886a4b39bada025c1
154 schema:familyName Elcoso
155 schema:givenName Guillermo
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016254061744.33
157 rdf:type schema:Person
158 sg:person.0664523715.10 schema:affiliation https://www.grid.ac/institutes/grid.8581.4
159 schema:familyName Bach
160 schema:givenName Alex
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664523715.10
162 rdf:type schema:Person
163 sg:person.0736077044.09 schema:affiliation https://www.grid.ac/institutes/grid.419190.4
164 schema:familyName Gonzalez-Recio
165 schema:givenName Oscar
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0736077044.09
167 rdf:type schema:Person
168 sg:pub.10.1007/978-1-4612-2776-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039435410
169 https://doi.org/10.1007/978-1-4612-2776-2
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/978-1-4757-3247-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003440853
172 https://doi.org/10.1007/978-1-4757-3247-4
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/978-94-009-1453-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024549411
175 https://doi.org/10.1007/978-94-009-1453-7_3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/b137845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002227681
178 https://doi.org/10.1007/b137845
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s12088-010-0061-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052897618
181 https://doi.org/10.1007/s12088-010-0061-6
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/ismej.2013.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047947766
184 https://doi.org/10.1038/ismej.2013.2
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nature05414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023893418
187 https://doi.org/10.1038/nature05414
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nbt.4110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101561769
190 https://doi.org/10.1038/nbt.4110
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/ng.3663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018819579
193 https://doi.org/10.1038/ng.3663
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nmeth.3176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023901695
196 https://doi.org/10.1038/nmeth.3176
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nmeth.4197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084129290
199 https://doi.org/10.1038/nmeth.4197
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nprot.2008.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987283
202 https://doi.org/10.1038/nprot.2008.211
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nrmicro.2016.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023858855
205 https://doi.org/10.1038/nrmicro.2016.83
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/srep14567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005996513
208 https://doi.org/10.1038/srep14567
209 rdf:type schema:CreativeWork
210 sg:pub.10.1186/1471-2180-13-30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038401648
211 https://doi.org/10.1186/1471-2180-13-30
212 rdf:type schema:CreativeWork
213 sg:pub.10.1186/s13059-016-1052-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051802890
214 https://doi.org/10.1186/s13059-016-1052-7
215 rdf:type schema:CreativeWork
216 https://app.dimensions.ai/details/publication/pub.1002227681 schema:CreativeWork
217 https://app.dimensions.ai/details/publication/pub.1003440853 schema:CreativeWork
218 https://app.dimensions.ai/details/publication/pub.1039435410 schema:CreativeWork
219 https://app.dimensions.ai/details/publication/pub.1074795580 schema:CreativeWork
220 https://app.dimensions.ai/details/publication/pub.1077202427 schema:CreativeWork
221 https://app.dimensions.ai/details/publication/pub.1083299347 schema:CreativeWork
222 https://doi.org/10.1001/jamasurg.2013.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025541249
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/0923-2508(91)90040-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1021660294
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.cell.2014.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016883501
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.mgene.2014.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022958840
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1016/j.ymeth.2016.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029409494
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1093/bioinformatics/btl117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040779948
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1093/bioinformatics/btu153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031501454
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1101/162578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090663661
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1101/gr.168245.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035646886
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1111/j.1439-0388.2007.00694.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017663403
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1111/j.1462-2920.2011.02452.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034044386
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1111/j.1472-765x.2004.01566.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014755169
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1111/j.2517-6161.1996.tb02080.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458978
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1200387 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464332
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1128/aem.00010-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000295829
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1128/aem.00720-15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040690113
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1128/aem.02815-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028974113
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1136/gutjnl-2016-312135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051673100
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1177/0884533615609896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063857759
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1371/journal.pcbi.1004957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008624939
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1371/journal.pgen.1005846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040745041
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1371/journal.pone.0008926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006873837
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1371/journal.pone.0021800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034510199
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1371/journal.pone.0073056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013765795
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1371/journal.pone.0085423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033816042
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1534/genetics.117.200782 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085317773
273 rdf:type schema:CreativeWork
274 https://doi.org/10.2527/jas.2012-5118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070888374
275 rdf:type schema:CreativeWork
276 https://doi.org/10.3168/jds.2009-2071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042026793
277 rdf:type schema:CreativeWork
278 https://doi.org/10.3168/jds.2013-7227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002026544
279 rdf:type schema:CreativeWork
280 https://doi.org/10.3168/jds.2013-7515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008771850
281 rdf:type schema:CreativeWork
282 https://doi.org/10.3168/jds.2014-9257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010220580
283 rdf:type schema:CreativeWork
284 https://doi.org/10.3168/jds.2015-9621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021021838
285 rdf:type schema:CreativeWork
286 https://doi.org/10.3168/jds.2015-9928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022362856
287 rdf:type schema:CreativeWork
288 https://doi.org/10.3168/jds.2017-13179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099737216
289 rdf:type schema:CreativeWork
290 https://doi.org/10.3389/fmicb.2015.01313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013187939
291 rdf:type schema:CreativeWork
292 https://doi.org/10.3389/fmicb.2017.02445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099609553
293 rdf:type schema:CreativeWork
294 https://www.grid.ac/institutes/grid.419190.4 schema:alternateName Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
295 schema:name Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria O.A., M.P, 28040, Madrid, Spain
296 Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas. UPM. Ciudad Universitaria s/n, 28040, Madrid, Spain
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.452205.4 schema:alternateName Department of Environment, Land, Water and Planning
299 schema:name Bioscience Research Division, ECODEV, 3038, Bundoora, Australia
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.5690.a schema:alternateName Technical University of Madrid
302 schema:name Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas. UPM. Ciudad Universitaria s/n, 28040, Madrid, Spain
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.8581.4 schema:alternateName Institute for Research and Technology in Food and Agriculture
305 schema:name Department of Ruminant Production, IRTA, 08140, Caldes de Montbui, Spain
306 Institució Catalana de Recerca i Estudis Avançants, ICREA, 08007, Barcelona, Spain
307 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...