Mathematical-model-guided development of full-thickness epidermal equivalent View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Junichi Kumamoto, Shinobu Nakanishi, Mio Makita, Masaaki Uesaka, Yusuke Yasugahira, Yasuaki Kobayashi, Masaharu Nagayama, Sumiko Denda, Mitsuhiro Denda

ABSTRACT

Epidermal equivalents prepared with passaged keratinocytes are typically 10-20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value. More... »

PAGES

17999

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36647-y

DOI

http://dx.doi.org/10.1038/s41598-018-36647-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110640729

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30573749


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hokkaido University", 
          "id": "https://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kumamoto", 
        "givenName": "Junichi", 
        "id": "sg:person.0722000073.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722000073.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shiseido Global Innovation Center, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakanishi", 
        "givenName": "Shinobu", 
        "id": "sg:person.012375775443.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375775443.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shiseido Global Innovation Center, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makita", 
        "givenName": "Mio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hokkaido University", 
          "id": "https://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uesaka", 
        "givenName": "Masaaki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hokkaido University", 
          "id": "https://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Graduate School of Science, Hokkaido University, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yasugahira", 
        "givenName": "Yusuke", 
        "id": "sg:person.014753334470.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753334470.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ochanomizu University", 
          "id": "https://www.grid.ac/institutes/grid.412314.1", 
          "name": [
            "Center for Simulation Sciences, Ochanomizu University, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kobayashi", 
        "givenName": "Yasuaki", 
        "id": "sg:person.01076666462.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076666462.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hokkaido University", 
          "id": "https://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagayama", 
        "givenName": "Masaharu", 
        "id": "sg:person.011022622351.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011022622351.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shiseido Global Innovation Center, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denda", 
        "givenName": "Sumiko", 
        "id": "sg:person.01206130504.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206130504.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Shiseido Global Innovation Center, Yokohama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Denda", 
        "givenName": "Mitsuhiro", 
        "id": "sg:person.01067255502.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067255502.39"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/exd.12302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002348566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005573926", 
          "https://doi.org/10.1038/nature14215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm3416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006822728", 
          "https://doi.org/10.1038/nrm3416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2016.05.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b14173-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011814867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1172/jci117919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014564587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.2013.339", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019484722", 
          "https://doi.org/10.1038/jid.2013.339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.2012.430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019903386", 
          "https://doi.org/10.1038/jid.2012.430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028063527", 
          "https://doi.org/10.1038/nature10137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031545491", 
          "https://doi.org/10.1038/nrm1619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm1619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031545491", 
          "https://doi.org/10.1038/nrm1619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ten.tec.2014.0065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033205489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/1286315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033896217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/jid.2009.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034003229", 
          "https://doi.org/10.1038/jid.2009.297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ib00073h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035165878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1308419110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036169466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2016.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046539159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1111/1523-1747.ep12343405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051286873", 
          "https://doi.org/10.1111/1523-1747.ep12343405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-4-431-55342-7_11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052775612", 
          "https://doi.org/10.1007/978-4-431-55342-7_11"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/21688370.2014.974451", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072289170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fbioe.2018.00154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107942317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fbioe.2018.00154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107942317"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Epidermal equivalents prepared with passaged keratinocytes are typically 10-20\u2009\u03bcm thick, whereas intact human epidermis is up to 100\u2009\u03bcm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36647-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Mathematical-model-guided development of full-thickness epidermal equivalent", 
    "pagination": "17999", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6143830fde3f18a8903f25d33a5bdd98f34db270e2cf99a007711925e7eb8f3e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30573749"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36647-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110640729"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36647-y", 
      "https://app.dimensions.ai/details/publication/pub.1110640729"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000309_0000000309/records_106271_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36647-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36647-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36647-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36647-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36647-y'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      21 PREDICATES      49 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36647-y schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N57921d3353084d3e8bfb77013dd4eb69
4 schema:citation sg:pub.10.1007/978-4-431-55342-7_11
5 sg:pub.10.1038/jid.2009.297
6 sg:pub.10.1038/jid.2012.430
7 sg:pub.10.1038/jid.2013.339
8 sg:pub.10.1038/nature10137
9 sg:pub.10.1038/nature14215
10 sg:pub.10.1038/nrm1619
11 sg:pub.10.1038/nrm3416
12 sg:pub.10.1111/1523-1747.ep12343405
13 https://doi.org/10.1016/j.jtbi.2016.02.032
14 https://doi.org/10.1016/j.jtbi.2016.05.025
15 https://doi.org/10.1039/c6ib00073h
16 https://doi.org/10.1073/pnas.1308419110
17 https://doi.org/10.1089/ten.tec.2014.0065
18 https://doi.org/10.1111/exd.12302
19 https://doi.org/10.1155/2016/1286315
20 https://doi.org/10.1172/jci117919
21 https://doi.org/10.1201/b14173-3
22 https://doi.org/10.3389/fbioe.2018.00154
23 https://doi.org/10.4161/21688370.2014.974451
24 schema:datePublished 2018-12
25 schema:datePublishedReg 2018-12-01
26 schema:description Epidermal equivalents prepared with passaged keratinocytes are typically 10-20 μm thick, whereas intact human epidermis is up to 100 μm thick. Our established mathematical model of epidermal homeostasis predicted that the undulatory pattern of the papillary layer beneath the epidermis is a key determinant of epidermal thickness. Here, we tested this prediction by seeding human keratinocytes on polyester textiles with various fiber-structural patterns in culture dishes exposed to air, aiming to develop a more physiologically realistic epidermal model using passaged keratinocytes. Textile substrate with fiber thickness and inter-fiber distance matching the computer predictions afforded a three-dimensional epidermal-equivalent model with thick stratum corneum and intercellular lamellar lipid structure. The basal layer structure was similar to that of human papillary layer. Cells located around the textile fibers were proliferating, as indicated by BrdU and YAP (Yes-associated protein) staining and expression of melanoma-associated chondroitin sulfate proteoglycan. Filaggrin, loricrin, claudin 1 and ZO-1 were all appropriately expressed. Silencing of transcriptional coactivator YAP with siRNA disturbed construction of the three-dimensional structure. Measurement of trans-epidermal water loss (TEWL) indicated that the model has excellent barrier function. Our results support the idea that mathematical modeling of complex biological processes can have predictive ability and practical value.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree true
30 schema:isPartOf N7a30c10d87dc40ec8ba3f65b42d6c6aa
31 N7d41bc6799fc4351860db915dd7895ef
32 sg:journal.1045337
33 schema:name Mathematical-model-guided development of full-thickness epidermal equivalent
34 schema:pagination 17999
35 schema:productId N16c640a2202549688a2745e7bb31d904
36 N83154d97a3804d9fb4977e5062266ab0
37 Na2f678f42e0f475e9683f0c254287051
38 Nbe5ec15b601947d8aa4471f2d1c0ff53
39 Nc2bb43a361c94c3e81d55ef767a62eda
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110640729
41 https://doi.org/10.1038/s41598-018-36647-y
42 schema:sdDatePublished 2019-04-11T08:30
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N076150ecbe37415c9051e90a2c49eda8
45 schema:url https://www.nature.com/articles/s41598-018-36647-y
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N076150ecbe37415c9051e90a2c49eda8 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N0778017fbbb740769b80a7d40c4c1ddd rdf:first N553e57fc79e742d5897a62a28b4d00d2
52 rdf:rest Nbdfd05b2eadb450d91133d15777c13db
53 N16c640a2202549688a2745e7bb31d904 schema:name dimensions_id
54 schema:value pub.1110640729
55 rdf:type schema:PropertyValue
56 N313b8e58f3104b1c91c130a88dbed250 schema:name Shiseido Global Innovation Center, Yokohama, Japan
57 rdf:type schema:Organization
58 N3bed97a61af143c1a6b50f81da8c0294 schema:name Shiseido Global Innovation Center, Yokohama, Japan
59 rdf:type schema:Organization
60 N50fa1aa1fa474e0d9d2de7fcb556909a schema:name Shiseido Global Innovation Center, Yokohama, Japan
61 rdf:type schema:Organization
62 N553e57fc79e742d5897a62a28b4d00d2 schema:affiliation N50fa1aa1fa474e0d9d2de7fcb556909a
63 schema:familyName Makita
64 schema:givenName Mio
65 rdf:type schema:Person
66 N57921d3353084d3e8bfb77013dd4eb69 rdf:first sg:person.0722000073.01
67 rdf:rest Nde5f43949f874d8fa053799c8f7c6a04
68 N57a367faf3ca41a998ebec4b1584b479 schema:name Shiseido Global Innovation Center, Yokohama, Japan
69 rdf:type schema:Organization
70 N655992c87b2f4d378dabc7fa48dc35ed rdf:first sg:person.014753334470.18
71 rdf:rest Nbe6cdf22dceb4c2fbb2a44f48712a88b
72 N7a30c10d87dc40ec8ba3f65b42d6c6aa schema:volumeNumber 8
73 rdf:type schema:PublicationVolume
74 N7d41bc6799fc4351860db915dd7895ef schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N83154d97a3804d9fb4977e5062266ab0 schema:name doi
77 schema:value 10.1038/s41598-018-36647-y
78 rdf:type schema:PropertyValue
79 N962e700670044c79836cc95f4c6d34a3 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
80 schema:familyName Uesaka
81 schema:givenName Masaaki
82 rdf:type schema:Person
83 Na2f678f42e0f475e9683f0c254287051 schema:name pubmed_id
84 schema:value 30573749
85 rdf:type schema:PropertyValue
86 Nac866ff7ee734e71b1dec109464cddc6 rdf:first sg:person.011022622351.21
87 rdf:rest Ncf926ba27ba742df93183e20f75ea0da
88 Nbdfd05b2eadb450d91133d15777c13db rdf:first N962e700670044c79836cc95f4c6d34a3
89 rdf:rest N655992c87b2f4d378dabc7fa48dc35ed
90 Nbe5ec15b601947d8aa4471f2d1c0ff53 schema:name nlm_unique_id
91 schema:value 101563288
92 rdf:type schema:PropertyValue
93 Nbe6cdf22dceb4c2fbb2a44f48712a88b rdf:first sg:person.01076666462.73
94 rdf:rest Nac866ff7ee734e71b1dec109464cddc6
95 Nc2bb43a361c94c3e81d55ef767a62eda schema:name readcube_id
96 schema:value 6143830fde3f18a8903f25d33a5bdd98f34db270e2cf99a007711925e7eb8f3e
97 rdf:type schema:PropertyValue
98 Ncf926ba27ba742df93183e20f75ea0da rdf:first sg:person.01206130504.22
99 rdf:rest Ne7c2c99c64a4462395d58743a5b9c5eb
100 Nde5f43949f874d8fa053799c8f7c6a04 rdf:first sg:person.012375775443.67
101 rdf:rest N0778017fbbb740769b80a7d40c4c1ddd
102 Ne7c2c99c64a4462395d58743a5b9c5eb rdf:first sg:person.01067255502.39
103 rdf:rest rdf:nil
104 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
105 schema:name Biological Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
108 schema:name Biochemistry and Cell Biology
109 rdf:type schema:DefinedTerm
110 sg:journal.1045337 schema:issn 2045-2322
111 schema:name Scientific Reports
112 rdf:type schema:Periodical
113 sg:person.01067255502.39 schema:affiliation N57a367faf3ca41a998ebec4b1584b479
114 schema:familyName Denda
115 schema:givenName Mitsuhiro
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01067255502.39
117 rdf:type schema:Person
118 sg:person.01076666462.73 schema:affiliation https://www.grid.ac/institutes/grid.412314.1
119 schema:familyName Kobayashi
120 schema:givenName Yasuaki
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076666462.73
122 rdf:type schema:Person
123 sg:person.011022622351.21 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
124 schema:familyName Nagayama
125 schema:givenName Masaharu
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011022622351.21
127 rdf:type schema:Person
128 sg:person.01206130504.22 schema:affiliation N313b8e58f3104b1c91c130a88dbed250
129 schema:familyName Denda
130 schema:givenName Sumiko
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01206130504.22
132 rdf:type schema:Person
133 sg:person.012375775443.67 schema:affiliation N3bed97a61af143c1a6b50f81da8c0294
134 schema:familyName Nakanishi
135 schema:givenName Shinobu
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012375775443.67
137 rdf:type schema:Person
138 sg:person.014753334470.18 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
139 schema:familyName Yasugahira
140 schema:givenName Yusuke
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014753334470.18
142 rdf:type schema:Person
143 sg:person.0722000073.01 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
144 schema:familyName Kumamoto
145 schema:givenName Junichi
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0722000073.01
147 rdf:type schema:Person
148 sg:pub.10.1007/978-4-431-55342-7_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052775612
149 https://doi.org/10.1007/978-4-431-55342-7_11
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/jid.2009.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034003229
152 https://doi.org/10.1038/jid.2009.297
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/jid.2012.430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019903386
155 https://doi.org/10.1038/jid.2012.430
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/jid.2013.339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019484722
158 https://doi.org/10.1038/jid.2013.339
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nature10137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028063527
161 https://doi.org/10.1038/nature10137
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nature14215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005573926
164 https://doi.org/10.1038/nature14215
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nrm1619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031545491
167 https://doi.org/10.1038/nrm1619
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nrm3416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006822728
170 https://doi.org/10.1038/nrm3416
171 rdf:type schema:CreativeWork
172 sg:pub.10.1111/1523-1747.ep12343405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051286873
173 https://doi.org/10.1111/1523-1747.ep12343405
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jtbi.2016.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046539159
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jtbi.2016.05.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011726321
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1039/c6ib00073h schema:sameAs https://app.dimensions.ai/details/publication/pub.1035165878
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.1308419110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036169466
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1089/ten.tec.2014.0065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033205489
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1111/exd.12302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002348566
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1155/2016/1286315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033896217
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1172/jci117919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014564587
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1201/b14173-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011814867
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3389/fbioe.2018.00154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107942317
194 rdf:type schema:CreativeWork
195 https://doi.org/10.4161/21688370.2014.974451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072289170
196 rdf:type schema:CreativeWork
197 https://www.grid.ac/institutes/grid.39158.36 schema:alternateName Hokkaido University
198 schema:name Graduate School of Science, Hokkaido University, Sapporo, Japan
199 Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
200 rdf:type schema:Organization
201 https://www.grid.ac/institutes/grid.412314.1 schema:alternateName Ochanomizu University
202 schema:name Center for Simulation Sciences, Ochanomizu University, Tokyo, Japan
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...