Quantitative design rules for protein-resistant surface coatings using machine learning View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tu C. Le, Matthew Penna, David A. Winkler, Irene Yarovsky

ABSTRACT

Preventing biological contamination (biofouling) is key to successful development of novel surface and nanoparticle-based technologies in the manufacturing industry and biomedicine. Protein adsorption is a crucial mediator of the interactions at the bio - nano -materials interface but is not well understood. Although general, empirical rules have been developed to guide the design of protein-resistant surface coatings, they are still largely qualitative. Herein we demonstrate that this knowledge gap can be addressed by using machine learning approaches to extract quantitative relationships between the material surface chemistry and the protein adsorption characteristics. We illustrate how robust linear and non-linear models can be constructed to accurately predict the percentage of protein adsorbed onto these surfaces using lysozyme or fibrinogen as prototype common contaminants. Our computational models could recapitulate the adsorption of proteins on functionalised surfaces in a test set with an r2 of 0.82 and standard error of prediction of 13%. Using the same data set that enabled the development of the Whitesides rules, we discovered an extension to the original rules. We describe a workflow that can be applied to large, consistently obtained data sets covering a broad range of surface functional groups and protein types. More... »

PAGES

265

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36597-5

DOI

http://dx.doi.org/10.1038/s41598-018-36597-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111608297

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30670792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le", 
        "givenName": "Tu C.", 
        "id": "sg:person.0650751333.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650751333.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Victoria, Australia", 
            "ARC Industrial Transformation Research Hub for Australian Steel Manufacturing, Wollongong, NSW, 2522, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penna", 
        "givenName": "Matthew", 
        "id": "sg:person.0652576620.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652576620.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Nottingham", 
          "id": "https://www.grid.ac/institutes/grid.4563.4", 
          "name": [
            "Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia", 
            "La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3084, Victoria, Australia", 
            "CSIRO Manufacturing, 3168, Clayton, Victoria, Australia", 
            "School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Winkler", 
        "givenName": "David A.", 
        "id": "sg:person.01130655607.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130655607.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "RMIT University", 
          "id": "https://www.grid.ac/institutes/grid.1017.7", 
          "name": [
            "School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Victoria, Australia", 
            "ARC Industrial Transformation Research Hub for Australian Steel Manufacturing, Wollongong, NSW, 2522, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yarovsky", 
        "givenName": "Irene", 
        "id": "sg:person.0772563437.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772563437.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1997.4101774.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000237590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2958.1997.4101774.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000237590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201400546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000623480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201001215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000789096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(97)78698-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001405519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(91)90044-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004073918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbm.a.20086", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005719326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfb.2007.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007923984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja034820y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008871788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja034820y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008871788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201502811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009502234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540140903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009996919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la010384m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011011354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la010384m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011011354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011242742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.201600597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011814435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011939848", 
          "https://doi.org/10.1038/ncomms1251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qsar.200810173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014990352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qsar.200810173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014990352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qsar.200420062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015387099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biomaterials.2005.03.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017750687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp04996a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017815706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0473321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021210423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0473321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021210423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6fd00050a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021923381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cc9800071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022053113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cc9800071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022053113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2008.03.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022198441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja000774f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023840241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja000774f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023840241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cis.2010.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024098465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qsar.200810202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024260342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qsar.200810202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024260342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540070419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024704298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn300415x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025295432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2005.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027271506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156856299x00720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027813429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1419799112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031501385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-014-2851-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032076897", 
          "https://doi.org/10.1007/s11051-014-2851-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp980230o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034067641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp980230o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034067641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4py01356e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034994667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036002651", 
          "https://doi.org/10.1038/nnano.2015.330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adem.200980020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037816456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adem.200980020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037816456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10629369708039130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040088301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0021-9797(91)90043-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042810086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micron.2007.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043119943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9716952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045320511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp9716952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045320511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0805135105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047169265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252102", 
          "https://doi.org/10.1038/nnano.2009.248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252102", 
          "https://doi.org/10.1038/nnano.2009.248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpharm.2007.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049908278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0079-6700(95)00011-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051716586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(97)00293-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052710362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6nr07022a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052946688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6nr07022a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052946688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr200066h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053858270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jcim.5b00206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055098143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci0499774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci0499774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm049621j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055949182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm049621j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055949182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm980697n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055959191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jm980697n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055959191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la047672d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056147200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la047672d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056147200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la304886r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056157485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la900083s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056164431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la900083s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056164431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/156802608783790901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069193648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.macromol.7b00450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085347523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.8b06856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107686284"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Preventing biological contamination (biofouling) is key to successful development of novel surface and nanoparticle-based technologies in the manufacturing industry and biomedicine. Protein adsorption is a crucial mediator of the interactions at the bio - nano -materials interface but is not well understood. Although general, empirical rules have been developed to guide the design of protein-resistant surface coatings, they are still largely qualitative. Herein we demonstrate that this knowledge gap can be addressed by using machine learning approaches to extract quantitative relationships between the material surface chemistry and the protein adsorption characteristics. We illustrate how robust linear and non-linear models can be constructed to accurately predict the percentage of protein adsorbed onto these surfaces using lysozyme or fibrinogen as prototype common contaminants. Our computational models could recapitulate the adsorption of proteins on functionalised surfaces in a test set with an r2 of 0.82 and standard error of prediction of 13%. Using the same data set that enabled the development of the Whitesides rules, we discovered an extension to the original rules. We describe a workflow that can be applied to large, consistently obtained data sets covering a broad range of surface functional groups and protein types.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36597-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Quantitative design rules for protein-resistant surface coatings using machine learning", 
    "pagination": "265", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "aff1f4642b47ec7b0386ee3a55027cb724346cca532ed73391d6b25a8c7ac6b9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30670792"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36597-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111608297"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36597-5", 
      "https://app.dimensions.ai/details/publication/pub.1111608297"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100812_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36597-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36597-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36597-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36597-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36597-5'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      85 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36597-5 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N38b9b83301dd434abb7638b7185f94df
4 schema:citation sg:pub.10.1007/s11051-014-2851-y
5 sg:pub.10.1038/ncomms1251
6 sg:pub.10.1038/nnano.2009.248
7 sg:pub.10.1038/nnano.2015.330
8 https://doi.org/10.1002/adem.200980020
9 https://doi.org/10.1002/adfm.201502811
10 https://doi.org/10.1002/adma.201001215
11 https://doi.org/10.1002/anie.201400546
12 https://doi.org/10.1002/jbm.a.20086
13 https://doi.org/10.1002/jcc.540070419
14 https://doi.org/10.1002/jcc.540140903
15 https://doi.org/10.1002/qsar.200420062
16 https://doi.org/10.1002/qsar.200810173
17 https://doi.org/10.1002/qsar.200810202
18 https://doi.org/10.1002/smll.201600597
19 https://doi.org/10.1016/0021-9797(91)90043-8
20 https://doi.org/10.1016/0021-9797(91)90044-9
21 https://doi.org/10.1016/0079-6700(95)00011-4
22 https://doi.org/10.1016/j.biomaterials.2005.03.010
23 https://doi.org/10.1016/j.cis.2010.12.007
24 https://doi.org/10.1016/j.colsurfb.2007.09.029
25 https://doi.org/10.1016/j.ijpharm.2007.11.005
26 https://doi.org/10.1016/j.micron.2007.08.003
27 https://doi.org/10.1016/j.polymer.2005.03.012
28 https://doi.org/10.1016/j.polymer.2007.07.007
29 https://doi.org/10.1016/j.polymer.2008.03.032
30 https://doi.org/10.1016/s0006-3495(97)78698-3
31 https://doi.org/10.1016/s0378-4371(97)00293-8
32 https://doi.org/10.1021/acs.jcim.5b00206
33 https://doi.org/10.1021/acs.macromol.7b00450
34 https://doi.org/10.1021/acsnano.8b06856
35 https://doi.org/10.1021/cc9800071
36 https://doi.org/10.1021/ci0499774
37 https://doi.org/10.1021/cr200066h
38 https://doi.org/10.1021/ja000774f
39 https://doi.org/10.1021/ja034820y
40 https://doi.org/10.1021/jm049621j
41 https://doi.org/10.1021/jm980697n
42 https://doi.org/10.1021/jp0473321
43 https://doi.org/10.1021/jp9716952
44 https://doi.org/10.1021/jp980230o
45 https://doi.org/10.1021/la010384m
46 https://doi.org/10.1021/la047672d
47 https://doi.org/10.1021/la304886r
48 https://doi.org/10.1021/la900083s
49 https://doi.org/10.1021/nn300415x
50 https://doi.org/10.1039/c4cp04996a
51 https://doi.org/10.1039/c4py01356e
52 https://doi.org/10.1039/c6fd00050a
53 https://doi.org/10.1039/c6nr07022a
54 https://doi.org/10.1046/j.1365-2958.1997.4101774.x
55 https://doi.org/10.1073/pnas.0805135105
56 https://doi.org/10.1073/pnas.1419799112
57 https://doi.org/10.1080/10629369708039130
58 https://doi.org/10.1163/156856299x00720
59 https://doi.org/10.2174/156802608783790901
60 schema:datePublished 2019-12
61 schema:datePublishedReg 2019-12-01
62 schema:description Preventing biological contamination (biofouling) is key to successful development of novel surface and nanoparticle-based technologies in the manufacturing industry and biomedicine. Protein adsorption is a crucial mediator of the interactions at the bio - nano -materials interface but is not well understood. Although general, empirical rules have been developed to guide the design of protein-resistant surface coatings, they are still largely qualitative. Herein we demonstrate that this knowledge gap can be addressed by using machine learning approaches to extract quantitative relationships between the material surface chemistry and the protein adsorption characteristics. We illustrate how robust linear and non-linear models can be constructed to accurately predict the percentage of protein adsorbed onto these surfaces using lysozyme or fibrinogen as prototype common contaminants. Our computational models could recapitulate the adsorption of proteins on functionalised surfaces in a test set with an r<sup>2</sup> of 0.82 and standard error of prediction of 13%. Using the same data set that enabled the development of the Whitesides rules, we discovered an extension to the original rules. We describe a workflow that can be applied to large, consistently obtained data sets covering a broad range of surface functional groups and protein types.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree true
66 schema:isPartOf N667282ffe43548fca2d8efe5ba7aee4a
67 N7b32456f4b8c4890a37af587a7f04c20
68 sg:journal.1045337
69 schema:name Quantitative design rules for protein-resistant surface coatings using machine learning
70 schema:pagination 265
71 schema:productId N4a591f18cf39401fac58a9356df5a82b
72 N5ffda25701b842b58d74ffe25620d1ea
73 N83227d1ed94d4d1dbf95a13b1d2baab6
74 N92cb5cc23d71423786abb9965be55d4b
75 Nd49f1d91643f4c20b131594026a2cff3
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111608297
77 https://doi.org/10.1038/s41598-018-36597-5
78 schema:sdDatePublished 2019-04-11T08:57
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N761c00e5adc34441b52a179bf911582b
81 schema:url https://www.nature.com/articles/s41598-018-36597-5
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N3683ac3f1b10439cb65017b616568dd8 rdf:first sg:person.0652576620.75
86 rdf:rest Nf46b18d81772440db3aa2e10d59efcb7
87 N38b9b83301dd434abb7638b7185f94df rdf:first sg:person.0650751333.95
88 rdf:rest N3683ac3f1b10439cb65017b616568dd8
89 N4a591f18cf39401fac58a9356df5a82b schema:name pubmed_id
90 schema:value 30670792
91 rdf:type schema:PropertyValue
92 N5ffda25701b842b58d74ffe25620d1ea schema:name doi
93 schema:value 10.1038/s41598-018-36597-5
94 rdf:type schema:PropertyValue
95 N667282ffe43548fca2d8efe5ba7aee4a schema:volumeNumber 9
96 rdf:type schema:PublicationVolume
97 N761c00e5adc34441b52a179bf911582b schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N7b32456f4b8c4890a37af587a7f04c20 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N83227d1ed94d4d1dbf95a13b1d2baab6 schema:name dimensions_id
102 schema:value pub.1111608297
103 rdf:type schema:PropertyValue
104 N92cb5cc23d71423786abb9965be55d4b schema:name readcube_id
105 schema:value aff1f4642b47ec7b0386ee3a55027cb724346cca532ed73391d6b25a8c7ac6b9
106 rdf:type schema:PropertyValue
107 N935ff70a32424b67b6604492aecc7e32 rdf:first sg:person.0772563437.88
108 rdf:rest rdf:nil
109 Nd49f1d91643f4c20b131594026a2cff3 schema:name nlm_unique_id
110 schema:value 101563288
111 rdf:type schema:PropertyValue
112 Nf46b18d81772440db3aa2e10d59efcb7 rdf:first sg:person.01130655607.67
113 rdf:rest N935ff70a32424b67b6604492aecc7e32
114 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
115 schema:name Chemical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
118 schema:name Physical Chemistry (incl. Structural)
119 rdf:type schema:DefinedTerm
120 sg:journal.1045337 schema:issn 2045-2322
121 schema:name Scientific Reports
122 rdf:type schema:Periodical
123 sg:person.01130655607.67 schema:affiliation https://www.grid.ac/institutes/grid.4563.4
124 schema:familyName Winkler
125 schema:givenName David A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130655607.67
127 rdf:type schema:Person
128 sg:person.0650751333.95 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
129 schema:familyName Le
130 schema:givenName Tu C.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650751333.95
132 rdf:type schema:Person
133 sg:person.0652576620.75 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
134 schema:familyName Penna
135 schema:givenName Matthew
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652576620.75
137 rdf:type schema:Person
138 sg:person.0772563437.88 schema:affiliation https://www.grid.ac/institutes/grid.1017.7
139 schema:familyName Yarovsky
140 schema:givenName Irene
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0772563437.88
142 rdf:type schema:Person
143 sg:pub.10.1007/s11051-014-2851-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1032076897
144 https://doi.org/10.1007/s11051-014-2851-y
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ncomms1251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011939848
147 https://doi.org/10.1038/ncomms1251
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nnano.2009.248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049252102
150 https://doi.org/10.1038/nnano.2009.248
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nnano.2015.330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036002651
153 https://doi.org/10.1038/nnano.2015.330
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/adem.200980020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037816456
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/adfm.201502811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009502234
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/adma.201001215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000789096
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/anie.201400546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000623480
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/jbm.a.20086 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005719326
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/jcc.540070419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024704298
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/jcc.540140903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009996919
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/qsar.200420062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015387099
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/qsar.200810173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014990352
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/qsar.200810202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024260342
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/smll.201600597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011814435
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0021-9797(91)90043-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042810086
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0021-9797(91)90044-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004073918
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0079-6700(95)00011-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051716586
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.biomaterials.2005.03.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017750687
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.cis.2010.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024098465
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.colsurfb.2007.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007923984
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ijpharm.2007.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049908278
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.micron.2007.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043119943
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.polymer.2005.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027271506
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.polymer.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011242742
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.polymer.2008.03.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022198441
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0006-3495(97)78698-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001405519
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s0378-4371(97)00293-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052710362
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/acs.jcim.5b00206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055098143
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/acs.macromol.7b00450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085347523
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/acsnano.8b06856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107686284
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/cc9800071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022053113
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1021/ci0499774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401984
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1021/cr200066h schema:sameAs https://app.dimensions.ai/details/publication/pub.1053858270
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1021/ja000774f schema:sameAs https://app.dimensions.ai/details/publication/pub.1023840241
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1021/ja034820y schema:sameAs https://app.dimensions.ai/details/publication/pub.1008871788
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1021/jm049621j schema:sameAs https://app.dimensions.ai/details/publication/pub.1055949182
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/jm980697n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055959191
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/jp0473321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021210423
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1021/jp9716952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045320511
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1021/jp980230o schema:sameAs https://app.dimensions.ai/details/publication/pub.1034067641
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1021/la010384m schema:sameAs https://app.dimensions.ai/details/publication/pub.1011011354
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1021/la047672d schema:sameAs https://app.dimensions.ai/details/publication/pub.1056147200
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1021/la304886r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056157485
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1021/la900083s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056164431
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1021/nn300415x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025295432
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1039/c4cp04996a schema:sameAs https://app.dimensions.ai/details/publication/pub.1017815706
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1039/c4py01356e schema:sameAs https://app.dimensions.ai/details/publication/pub.1034994667
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1039/c6fd00050a schema:sameAs https://app.dimensions.ai/details/publication/pub.1021923381
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1039/c6nr07022a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052946688
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1046/j.1365-2958.1997.4101774.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000237590
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1073/pnas.0805135105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047169265
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1073/pnas.1419799112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031501385
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1080/10629369708039130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040088301
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1163/156856299x00720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027813429
256 rdf:type schema:CreativeWork
257 https://doi.org/10.2174/156802608783790901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069193648
258 rdf:type schema:CreativeWork
259 https://www.grid.ac/institutes/grid.1017.7 schema:alternateName RMIT University
260 schema:name ARC Industrial Transformation Research Hub for Australian Steel Manufacturing, Wollongong, NSW, 2522, Australia
261 School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Victoria, Australia
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.4563.4 schema:alternateName University of Nottingham
264 schema:name CSIRO Manufacturing, 3168, Clayton, Victoria, Australia
265 La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3084, Victoria, Australia
266 Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052, Victoria, Australia
267 School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...