Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Koshi Takenaka, Daigo Asai, Ryoichi Kaizu, Yosuke Mizuno, Yasunori Yokoyama, Yoshihiko Okamoto, Naoyuki Katayama, Hiroyuki S. Suzuki, Yasutaka Imanaka

ABSTRACT

Stimulated by strong demand for thermal expansion control from advanced modern industries, various giant negative thermal expansion (NTE) materials have been developed during the last decade. Nevertheless, most such materials exhibit anisotropic thermal expansion in the crystal lattice. Therefore, strains and cracks induced during repeated thermal cycling degrade their performance as thermal-expansion compensators. Here we achieved giant isotropic NTE with volume change exceeding 3%, up to 4.1%, via control of the electronic configuration in Sm atoms of SmS, (4 f)6 or (4 f)5(5d)1, by partial replacement of Sm with Y. Contrary to NTE originating from cooperative phenomena such as magnetism, the present NTE attributable to the intra-atomic phenomenon avoids the size effect of NTE and therefore provides us with fine-grained thermal-expansion compensators, which are strongly desired to control thermal expansion of microregions such as underfill of a three-dimensional integrated circuit. Volume control of lanthanide monosulfides via tuning of the 4 f electronic configuration presents avenues for novel mechanical functions of a material, such as a volume-change driven actuator by an electrical field, which has a different drive principle from those of conventional strain-driven actuators such as piezostrictive or magnetostrictive materials. More... »

PAGES

122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36568-w

DOI

http://dx.doi.org/10.1038/s41598-018-36568-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111333458

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30644408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Takenaka", 
        "givenName": "Koshi", 
        "id": "sg:person.012227545611.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227545611.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asai", 
        "givenName": "Daigo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaizu", 
        "givenName": "Ryoichi", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mizuno", 
        "givenName": "Yosuke", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yokoyama", 
        "givenName": "Yasunori", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okamoto", 
        "givenName": "Yoshihiko", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nagoya University", 
          "id": "https://www.grid.ac/institutes/grid.27476.30", 
          "name": [
            "Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katayama", 
        "givenName": "Naoyuki", 
        "id": "sg:person.01372470107.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372470107.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Sengen, 305-0047, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suzuki", 
        "givenName": "Hiroyuki S.", 
        "id": "sg:person.015450677307.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450677307.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Sengen, 305-0047, Tsukuba, Japan", 
            "Tsukuba Magnet Laboratory, National Institute for Materials Science (NIMS), Sakura, 305-0003, Tsukuba, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Imanaka", 
        "givenName": "Yasutaka", 
        "id": "sg:person.0715125163.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715125163.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/425674a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977395", 
          "https://doi.org/10.1038/425674a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/425674a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977395", 
          "https://doi.org/10.1038/425674a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(86)90610-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013078638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(86)90610-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013078638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07816", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017901368", 
          "https://doi.org/10.1038/nature07816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/592/1/012028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018320249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/480465a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018507094", 
          "https://doi.org/10.1038/480465a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/a904297k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019224087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-6996/16/3/034904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026901375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2014.08.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029399459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030632523", 
          "https://doi.org/10.1038/ncomms14102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(93)90457-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031182023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(93)90457-d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031182023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cs00461b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031390207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201102552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032556251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4908258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036524505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200704421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040026206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-6996/15/1/015009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040497328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1468-6996/13/1/013001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046690049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.035114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050737804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.035114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050737804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052709280", 
          "https://doi.org/10.1038/nature01994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052709280", 
          "https://doi.org/10.1038/nature01994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja405161z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055854855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja510693a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055857061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.11.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060519505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.11.2783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060519505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.11.3842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060519635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.11.3842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060519635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.4154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.19.4154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060525230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.014410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.65.014410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.245118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.245118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.245118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060613968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.220103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.220103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.195103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060643308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.195103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060643308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.255501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.255501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060831369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.76.064601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063123054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.77.113704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063123830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.321-324.198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072109951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms14441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083736619", 
          "https://doi.org/10.1038/ncomms14441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compscitech.2017.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085203372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.7b08625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092133777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.10.115501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092270217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ectc.2017.209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094910493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-02378-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099864969", 
          "https://doi.org/10.1038/s41467-017-02378-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201804082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103945021"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Stimulated by strong demand for thermal expansion control from advanced modern industries, various giant negative thermal expansion (NTE) materials have been developed during the last decade. Nevertheless, most such materials exhibit anisotropic thermal expansion in the crystal lattice. Therefore, strains and cracks induced during repeated thermal cycling degrade their performance as thermal-expansion compensators. Here we achieved giant isotropic NTE with volume change exceeding 3%, up to 4.1%, via control of the electronic configuration in Sm atoms of SmS, (4\u2009f)6 or (4\u2009f)5(5d)1, by partial replacement of Sm with Y. Contrary to NTE originating from cooperative phenomena such as magnetism, the present NTE attributable to the intra-atomic phenomenon avoids the size effect of NTE and therefore provides us with fine-grained thermal-expansion compensators, which are strongly desired to control thermal expansion of microregions such as underfill of a three-dimensional integrated circuit. Volume control of lanthanide monosulfides via tuning of the 4\u2009f electronic configuration presents avenues for novel mechanical functions of a material, such as a volume-change driven actuator by an electrical field, which has a different drive principle from those of conventional strain-driven actuators such as piezostrictive or magnetostrictive materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36568-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6820802", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5924575", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer", 
    "pagination": "122", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9b701934f4994d327a5a60fa8f6eb6c83808b8b79d932543ca5a01901558109e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30644408"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36568-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111333458"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36568-w", 
      "https://app.dimensions.ai/details/publication/pub.1111333458"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000320_0000000320/records_101370_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36568-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36568-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36568-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36568-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36568-w'


 

This table displays all metadata directly associated to this object as RDF triples.

251 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36568-w schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nf49f14fec01740fdaecff3aad9ffd273
4 schema:citation sg:pub.10.1038/425674a
5 sg:pub.10.1038/480465a
6 sg:pub.10.1038/nature01994
7 sg:pub.10.1038/nature07816
8 sg:pub.10.1038/ncomms14102
9 sg:pub.10.1038/ncomms14441
10 sg:pub.10.1038/s41467-017-02378-3
11 https://doi.org/10.1002/adma.201102552
12 https://doi.org/10.1002/anie.200704421
13 https://doi.org/10.1002/anie.201804082
14 https://doi.org/10.1016/0304-8853(86)90610-4
15 https://doi.org/10.1016/0304-8853(93)90457-d
16 https://doi.org/10.1016/j.compscitech.2014.08.029
17 https://doi.org/10.1016/j.compscitech.2017.04.028
18 https://doi.org/10.1021/ja405161z
19 https://doi.org/10.1021/ja510693a
20 https://doi.org/10.1021/jacs.7b08625
21 https://doi.org/10.1039/a904297k
22 https://doi.org/10.1039/c4cs00461b
23 https://doi.org/10.1063/1.4908258
24 https://doi.org/10.1088/1468-6996/13/1/013001
25 https://doi.org/10.1088/1468-6996/15/1/015009
26 https://doi.org/10.1088/1468-6996/16/3/034904
27 https://doi.org/10.1088/1742-6596/592/1/012028
28 https://doi.org/10.1103/physrevb.11.2783
29 https://doi.org/10.1103/physrevb.11.3842
30 https://doi.org/10.1103/physrevb.19.4154
31 https://doi.org/10.1103/physrevb.65.014410
32 https://doi.org/10.1103/physrevb.71.245118
33 https://doi.org/10.1103/physrevb.74.035114
34 https://doi.org/10.1103/physrevb.85.220103
35 https://doi.org/10.1103/physrevb.89.195103
36 https://doi.org/10.1103/physrevlett.25.1430
37 https://doi.org/10.1103/physrevlett.95.255501
38 https://doi.org/10.1109/ectc.2017.209
39 https://doi.org/10.1143/jpsj.76.064601
40 https://doi.org/10.1143/jpsj.77.113704
41 https://doi.org/10.4028/www.scientific.net/msf.321-324.198
42 https://doi.org/10.7567/apex.10.115501
43 schema:datePublished 2019-12
44 schema:datePublishedReg 2019-12-01
45 schema:description Stimulated by strong demand for thermal expansion control from advanced modern industries, various giant negative thermal expansion (NTE) materials have been developed during the last decade. Nevertheless, most such materials exhibit anisotropic thermal expansion in the crystal lattice. Therefore, strains and cracks induced during repeated thermal cycling degrade their performance as thermal-expansion compensators. Here we achieved giant isotropic NTE with volume change exceeding 3%, up to 4.1%, via control of the electronic configuration in Sm atoms of SmS, (4 f)<sup>6</sup> or (4 f)<sup>5</sup>(5d)<sup>1</sup>, by partial replacement of Sm with Y. Contrary to NTE originating from cooperative phenomena such as magnetism, the present NTE attributable to the intra-atomic phenomenon avoids the size effect of NTE and therefore provides us with fine-grained thermal-expansion compensators, which are strongly desired to control thermal expansion of microregions such as underfill of a three-dimensional integrated circuit. Volume control of lanthanide monosulfides via tuning of the 4 f electronic configuration presents avenues for novel mechanical functions of a material, such as a volume-change driven actuator by an electrical field, which has a different drive principle from those of conventional strain-driven actuators such as piezostrictive or magnetostrictive materials.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N1d9d0cadee9845e8b10d58d2f8838a97
50 N57901a2118884b0c96eaee7536299eb6
51 sg:journal.1045337
52 schema:name Giant isotropic negative thermal expansion in Y-doped samarium monosulfides by intra-atomic charge transfer
53 schema:pagination 122
54 schema:productId N1b4762fb99144546847e0f7f439c91ba
55 N54f57953c12a48bdb2f9b8a31f3a122b
56 Nc6d5f65d290248c89ba60a1ae667bf34
57 Nde768b24623545bda44cc7f972db9eaf
58 Neeb40b740426465ea3525c5bdece2439
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111333458
60 https://doi.org/10.1038/s41598-018-36568-w
61 schema:sdDatePublished 2019-04-11T08:41
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N915fd6f36bdb4bac9293b9aaa79cc160
64 schema:url https://www.nature.com/articles/s41598-018-36568-w
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N127c940f6d624f628345f9dc5bc9b8b0 rdf:first Na4cc39b2a485410db8a07233dd7c96ef
69 rdf:rest N216ebdc120984727822ff51670602c45
70 N1b4762fb99144546847e0f7f439c91ba schema:name nlm_unique_id
71 schema:value 101563288
72 rdf:type schema:PropertyValue
73 N1d9d0cadee9845e8b10d58d2f8838a97 schema:volumeNumber 9
74 rdf:type schema:PublicationVolume
75 N216ebdc120984727822ff51670602c45 rdf:first sg:person.01372470107.26
76 rdf:rest N504dc84815274459b1c556739e01eb36
77 N396c00928b784cbf9fa966077a70ea4c rdf:first N5bff01267cc74deab5156106d13c2643
78 rdf:rest N3fd8c101ad4b4f0e912e4dc359754290
79 N3fd8c101ad4b4f0e912e4dc359754290 rdf:first Nde13245d90ac4f1d954f75a24f79f65a
80 rdf:rest N127c940f6d624f628345f9dc5bc9b8b0
81 N504dc84815274459b1c556739e01eb36 rdf:first sg:person.015450677307.97
82 rdf:rest Nd443fbe6f7c74ed695a6fe7387bdd010
83 N54f57953c12a48bdb2f9b8a31f3a122b schema:name doi
84 schema:value 10.1038/s41598-018-36568-w
85 rdf:type schema:PropertyValue
86 N57901a2118884b0c96eaee7536299eb6 schema:issueNumber 1
87 rdf:type schema:PublicationIssue
88 N5bff01267cc74deab5156106d13c2643 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
89 schema:familyName Mizuno
90 schema:givenName Yosuke
91 rdf:type schema:Person
92 N7b417792b4f54bd08ea306558b062721 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
93 schema:familyName Asai
94 schema:givenName Daigo
95 rdf:type schema:Person
96 N915fd6f36bdb4bac9293b9aaa79cc160 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Na4cc39b2a485410db8a07233dd7c96ef schema:affiliation https://www.grid.ac/institutes/grid.27476.30
99 schema:familyName Okamoto
100 schema:givenName Yoshihiko
101 rdf:type schema:Person
102 Nb5589b0250af43cc91dc71e7ccd30b44 rdf:first Nb656a76cf50e48e4bbec68006eaff632
103 rdf:rest N396c00928b784cbf9fa966077a70ea4c
104 Nb5fed57bedee414b9ac406903715badf rdf:first N7b417792b4f54bd08ea306558b062721
105 rdf:rest Nb5589b0250af43cc91dc71e7ccd30b44
106 Nb656a76cf50e48e4bbec68006eaff632 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
107 schema:familyName Kaizu
108 schema:givenName Ryoichi
109 rdf:type schema:Person
110 Nc6d5f65d290248c89ba60a1ae667bf34 schema:name dimensions_id
111 schema:value pub.1111333458
112 rdf:type schema:PropertyValue
113 Nd443fbe6f7c74ed695a6fe7387bdd010 rdf:first sg:person.0715125163.14
114 rdf:rest rdf:nil
115 Nde13245d90ac4f1d954f75a24f79f65a schema:affiliation https://www.grid.ac/institutes/grid.27476.30
116 schema:familyName Yokoyama
117 schema:givenName Yasunori
118 rdf:type schema:Person
119 Nde768b24623545bda44cc7f972db9eaf schema:name pubmed_id
120 schema:value 30644408
121 rdf:type schema:PropertyValue
122 Neeb40b740426465ea3525c5bdece2439 schema:name readcube_id
123 schema:value 9b701934f4994d327a5a60fa8f6eb6c83808b8b79d932543ca5a01901558109e
124 rdf:type schema:PropertyValue
125 Nf49f14fec01740fdaecff3aad9ffd273 rdf:first sg:person.012227545611.19
126 rdf:rest Nb5fed57bedee414b9ac406903715badf
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
131 schema:name Materials Engineering
132 rdf:type schema:DefinedTerm
133 sg:grant.5924575 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36568-w
134 rdf:type schema:MonetaryGrant
135 sg:grant.6820802 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36568-w
136 rdf:type schema:MonetaryGrant
137 sg:journal.1045337 schema:issn 2045-2322
138 schema:name Scientific Reports
139 rdf:type schema:Periodical
140 sg:person.012227545611.19 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
141 schema:familyName Takenaka
142 schema:givenName Koshi
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012227545611.19
144 rdf:type schema:Person
145 sg:person.01372470107.26 schema:affiliation https://www.grid.ac/institutes/grid.27476.30
146 schema:familyName Katayama
147 schema:givenName Naoyuki
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372470107.26
149 rdf:type schema:Person
150 sg:person.015450677307.97 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
151 schema:familyName Suzuki
152 schema:givenName Hiroyuki S.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450677307.97
154 rdf:type schema:Person
155 sg:person.0715125163.14 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
156 schema:familyName Imanaka
157 schema:givenName Yasutaka
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715125163.14
159 rdf:type schema:Person
160 sg:pub.10.1038/425674a schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977395
161 https://doi.org/10.1038/425674a
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/480465a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018507094
164 https://doi.org/10.1038/480465a
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nature01994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052709280
167 https://doi.org/10.1038/nature01994
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nature07816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017901368
170 https://doi.org/10.1038/nature07816
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/ncomms14102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030632523
173 https://doi.org/10.1038/ncomms14102
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/ncomms14441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083736619
176 https://doi.org/10.1038/ncomms14441
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/s41467-017-02378-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099864969
179 https://doi.org/10.1038/s41467-017-02378-3
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/adma.201102552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032556251
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/anie.200704421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040026206
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1002/anie.201804082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103945021
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0304-8853(86)90610-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013078638
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0304-8853(93)90457-d schema:sameAs https://app.dimensions.ai/details/publication/pub.1031182023
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.compscitech.2014.08.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029399459
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.compscitech.2017.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085203372
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/ja405161z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055854855
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/ja510693a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055857061
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/jacs.7b08625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092133777
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1039/a904297k schema:sameAs https://app.dimensions.ai/details/publication/pub.1019224087
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1039/c4cs00461b schema:sameAs https://app.dimensions.ai/details/publication/pub.1031390207
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1063/1.4908258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036524505
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1088/1468-6996/13/1/013001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046690049
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1088/1468-6996/15/1/015009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040497328
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1088/1468-6996/16/3/034904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026901375
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1088/1742-6596/592/1/012028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018320249
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.11.2783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060519505
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.11.3842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060519635
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevb.19.4154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060525230
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevb.65.014410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060601759
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevb.71.245118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060613968
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevb.74.035114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050737804
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevb.85.220103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639090
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevb.89.195103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060643308
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevlett.25.1430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060773777
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevlett.95.255501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831369
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1109/ectc.2017.209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094910493
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1143/jpsj.76.064601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063123054
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1143/jpsj.77.113704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063123830
240 rdf:type schema:CreativeWork
241 https://doi.org/10.4028/www.scientific.net/msf.321-324.198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072109951
242 rdf:type schema:CreativeWork
243 https://doi.org/10.7567/apex.10.115501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092270217
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
246 schema:name Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Sengen, 305-0047, Tsukuba, Japan
247 Tsukuba Magnet Laboratory, National Institute for Materials Science (NIMS), Sakura, 305-0003, Tsukuba, Japan
248 rdf:type schema:Organization
249 https://www.grid.ac/institutes/grid.27476.30 schema:alternateName Nagoya University
250 schema:name Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, 464-8603, Nagoya, Japan
251 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...