Nash Equilibria in the Response Strategy of Correlated Games View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

A. D. Correia, H. T. C. Stoof

ABSTRACT

In nature and society, problems that arise when different interests are difficult to reconcile are modeled in game theory. While most applications assume that the players make decisions based only on the payoff matrix, a more detailed modeling is necessary if we also want to consider the influence of correlations on the decisions of the players. We therefore extend here the existing framework of correlated strategies by giving the players the freedom to respond to the instructions of the correlation device by probabilistically following or not following its suggestions. This creates a new type of games that we call "correlated games". The associated response strategies that can solve these games turn out to have a rich structure of Nash equilibria that goes beyond the correlated equilibrium and pure or mixed-strategy solutions and also gives better payoffs in certain cases. We here determine these Nash equilibria for all possible correlated Snowdrift games and we find these solutions to be describable by Ising models in thermal equilibrium. We believe that our approach paves the way to a study of correlations in games that uncovers the existence of interesting underlying interaction mechanisms, without compromising the independence of the players. More... »

PAGES

2352

Journal

TITLE

Scientific Reports

ISSUE

1

VOLUME

9

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36562-2

DOI

http://dx.doi.org/10.1038/s41598-018-36562-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112229001

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30787306


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economic Theory", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/14", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Economics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Utrecht University", 
          "id": "https://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Institute for Theoretical Physics and Center for Complex Systems Studies, Utrecht University, P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Correia", 
        "givenName": "A. D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Utrecht University", 
          "id": "https://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Institute for Theoretical Physics and Center for Complex Systems Studies, Utrecht University, P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stoof", 
        "givenName": "H. T. C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1206681109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002387592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002913322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/246015a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005206609", 
          "https://doi.org/10.1038/246015a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s001910050054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006803429", 
          "https://doi.org/10.1007/s001910050054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2016.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009658240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.36.1.48", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011068067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011202414", 
          "https://doi.org/10.1007/bf01213855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01213855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011202414", 
          "https://doi.org/10.1007/bf01213855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1093411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014755623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2016.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015513417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4020-8763-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019104313", 
          "https://doi.org/10.1007/978-1-4020-8763-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1019104313", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019519921", 
          "https://doi.org/10.1038/nature07921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019519921", 
          "https://doi.org/10.1038/nature07921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2015-60270-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022725918", 
          "https://doi.org/10.1140/epjb/e2015-60270-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024865640", 
          "https://doi.org/10.1038/nature04624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024865640", 
          "https://doi.org/10.1038/nature04624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04624", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024865640", 
          "https://doi.org/10.1038/nature04624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biosystems.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028970462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2006.03.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032558377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033246835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.58.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033246835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2007.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037645265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10640-016-0037-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038145514", 
          "https://doi.org/10.1007/s10640-016-0037-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1108243108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041333761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0531(91)90048-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044834533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2014.0735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047829818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/18913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048848270", 
          "https://doi.org/10.1038/18913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/18913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048848270", 
          "https://doi.org/10.1038/18913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.geb.2005.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049875532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13235-015-0144-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050003745", 
          "https://doi.org/10.1007/s13235-015-0144-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050641584", 
          "https://doi.org/10.1038/nature02360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050641584", 
          "https://doi.org/10.1038/nature02360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2012.0997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052444945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1848514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062237880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1911154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069639406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/emss/3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072316945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2017.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085603416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00191-017-0539-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092141253", 
          "https://doi.org/10.1007/s00191-017-0539-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physa.2017.10.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092536458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-01407-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092638667", 
          "https://doi.org/10.1038/s41467-017-01407-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-16982-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093099533", 
          "https://doi.org/10.1038/s41598-017-16982-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511806292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098668466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/0198283814.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098795381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.062136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105020643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.97.062136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105020643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-32933-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107235169", 
          "https://doi.org/10.1038/s41598-018-32933-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "In nature and society, problems that arise when different interests are difficult to reconcile are modeled in game theory. While most applications assume that the players make decisions based only on the payoff matrix, a more detailed modeling is necessary if we also want to consider the influence of correlations on the decisions of the players. We therefore extend here the existing framework of correlated strategies by giving the players the freedom to respond to the instructions of the correlation device by probabilistically following or not following its suggestions. This creates a new type of games that we call \"correlated games\". The associated response strategies that can solve these games turn out to have a rich structure of Nash equilibria that goes beyond the correlated equilibrium and pure or mixed-strategy solutions and also gives better payoffs in certain cases. We here determine these Nash equilibria for all possible correlated Snowdrift games and we find these solutions to be describable by Ising models in thermal equilibrium. We believe that our approach paves the way to a study of correlations in games that uncovers the existence of interesting underlying interaction mechanisms, without compromising the independence of the players.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36562-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Nash Equilibria in the Response Strategy of Correlated Games", 
    "pagination": "2352", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c7906b535bf1242850d97d6012485ef65d6ead5df3b0e04a0ee5874c3067abde"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30787306"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36562-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112229001"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36562-2", 
      "https://app.dimensions.ai/details/publication/pub.1112229001"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113650_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36562-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36562-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36562-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36562-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36562-2'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      68 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36562-2 schema:about anzsrc-for:14
2 anzsrc-for:1401
3 schema:author Nc482514c02f749b4bedec499447a09a5
4 schema:citation sg:pub.10.1007/978-1-4020-8763-9
5 sg:pub.10.1007/bf01213855
6 sg:pub.10.1007/s00191-017-0539-z
7 sg:pub.10.1007/s001910050054
8 sg:pub.10.1007/s10640-016-0037-z
9 sg:pub.10.1007/s13235-015-0144-4
10 sg:pub.10.1038/18913
11 sg:pub.10.1038/246015a0
12 sg:pub.10.1038/nature02360
13 sg:pub.10.1038/nature04624
14 sg:pub.10.1038/nature07921
15 sg:pub.10.1038/s41467-017-01407-5
16 sg:pub.10.1038/s41598-017-16982-2
17 sg:pub.10.1038/s41598-018-32933-x
18 sg:pub.10.1140/epjb/e2015-60270-7
19 https://app.dimensions.ai/details/publication/pub.1019104313
20 https://doi.org/10.1016/0022-0531(91)90048-9
21 https://doi.org/10.1016/j.biosystems.2009.10.003
22 https://doi.org/10.1016/j.geb.2005.08.012
23 https://doi.org/10.1016/j.geb.2006.03.008
24 https://doi.org/10.1016/j.physa.2017.10.035
25 https://doi.org/10.1016/j.physleta.2016.06.017
26 https://doi.org/10.1016/j.physrep.2007.04.004
27 https://doi.org/10.1016/j.physrep.2016.10.006
28 https://doi.org/10.1016/j.physrep.2017.05.004
29 https://doi.org/10.1017/cbo9780511806292
30 https://doi.org/10.1073/pnas.1108243108
31 https://doi.org/10.1073/pnas.1206681109
32 https://doi.org/10.1073/pnas.36.1.48
33 https://doi.org/10.1093/0198283814.001.0001
34 https://doi.org/10.1098/rsif.2012.0997
35 https://doi.org/10.1098/rsif.2014.0735
36 https://doi.org/10.1103/physreve.58.69
37 https://doi.org/10.1103/physreve.97.062136
38 https://doi.org/10.1119/1.1848514
39 https://doi.org/10.1126/science.1093411
40 https://doi.org/10.1126/science.1133755
41 https://doi.org/10.2307/1911154
42 https://doi.org/10.4171/emss/3
43 schema:datePublished 2019-12
44 schema:datePublishedReg 2019-12-01
45 schema:description In nature and society, problems that arise when different interests are difficult to reconcile are modeled in game theory. While most applications assume that the players make decisions based only on the payoff matrix, a more detailed modeling is necessary if we also want to consider the influence of correlations on the decisions of the players. We therefore extend here the existing framework of correlated strategies by giving the players the freedom to respond to the instructions of the correlation device by probabilistically following or not following its suggestions. This creates a new type of games that we call "correlated games". The associated response strategies that can solve these games turn out to have a rich structure of Nash equilibria that goes beyond the correlated equilibrium and pure or mixed-strategy solutions and also gives better payoffs in certain cases. We here determine these Nash equilibria for all possible correlated Snowdrift games and we find these solutions to be describable by Ising models in thermal equilibrium. We believe that our approach paves the way to a study of correlations in games that uncovers the existence of interesting underlying interaction mechanisms, without compromising the independence of the players.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree true
49 schema:isPartOf N4baaf83247ac413b9863438aebddfd61
50 Nb4c509e74945441a8dff030f3dbd0571
51 sg:journal.1045337
52 schema:name Nash Equilibria in the Response Strategy of Correlated Games
53 schema:pagination 2352
54 schema:productId N16775a5f67d144789ae33b82c72b97f6
55 N70f3b744bfe34779b763ddbddb1241cc
56 N7f057fdf411f402082abccf0f1cc3b53
57 N924fa900370143a0b239d81a2187f063
58 Nf89b0518e56a45a680deb3f445b8fbeb
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112229001
60 https://doi.org/10.1038/s41598-018-36562-2
61 schema:sdDatePublished 2019-04-11T10:31
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher Nd0cf910acb2b47c081c5ff581e03e60c
64 schema:url https://www.nature.com/articles/s41598-018-36562-2
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N06a5c18030d64b638ae53c3c5e315d94 rdf:first N72766658308444d0867e589633960c74
69 rdf:rest rdf:nil
70 N16775a5f67d144789ae33b82c72b97f6 schema:name doi
71 schema:value 10.1038/s41598-018-36562-2
72 rdf:type schema:PropertyValue
73 N2b15b4c63bd44bbf874fa58dd5e05b92 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
74 schema:familyName Correia
75 schema:givenName A. D.
76 rdf:type schema:Person
77 N4baaf83247ac413b9863438aebddfd61 schema:volumeNumber 9
78 rdf:type schema:PublicationVolume
79 N70f3b744bfe34779b763ddbddb1241cc schema:name dimensions_id
80 schema:value pub.1112229001
81 rdf:type schema:PropertyValue
82 N72766658308444d0867e589633960c74 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
83 schema:familyName Stoof
84 schema:givenName H. T. C.
85 rdf:type schema:Person
86 N7f057fdf411f402082abccf0f1cc3b53 schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N924fa900370143a0b239d81a2187f063 schema:name pubmed_id
90 schema:value 30787306
91 rdf:type schema:PropertyValue
92 Nb4c509e74945441a8dff030f3dbd0571 schema:issueNumber 1
93 rdf:type schema:PublicationIssue
94 Nc482514c02f749b4bedec499447a09a5 rdf:first N2b15b4c63bd44bbf874fa58dd5e05b92
95 rdf:rest N06a5c18030d64b638ae53c3c5e315d94
96 Nd0cf910acb2b47c081c5ff581e03e60c schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nf89b0518e56a45a680deb3f445b8fbeb schema:name readcube_id
99 schema:value c7906b535bf1242850d97d6012485ef65d6ead5df3b0e04a0ee5874c3067abde
100 rdf:type schema:PropertyValue
101 anzsrc-for:14 schema:inDefinedTermSet anzsrc-for:
102 schema:name Economics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:1401 schema:inDefinedTermSet anzsrc-for:
105 schema:name Economic Theory
106 rdf:type schema:DefinedTerm
107 sg:journal.1045337 schema:issn 2045-2322
108 schema:name Scientific Reports
109 rdf:type schema:Periodical
110 sg:pub.10.1007/978-1-4020-8763-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019104313
111 https://doi.org/10.1007/978-1-4020-8763-9
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/bf01213855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011202414
114 https://doi.org/10.1007/bf01213855
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s00191-017-0539-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1092141253
117 https://doi.org/10.1007/s00191-017-0539-z
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s001910050054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006803429
120 https://doi.org/10.1007/s001910050054
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/s10640-016-0037-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1038145514
123 https://doi.org/10.1007/s10640-016-0037-z
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/s13235-015-0144-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050003745
126 https://doi.org/10.1007/s13235-015-0144-4
127 rdf:type schema:CreativeWork
128 sg:pub.10.1038/18913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048848270
129 https://doi.org/10.1038/18913
130 rdf:type schema:CreativeWork
131 sg:pub.10.1038/246015a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005206609
132 https://doi.org/10.1038/246015a0
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nature02360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050641584
135 https://doi.org/10.1038/nature02360
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature04624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024865640
138 https://doi.org/10.1038/nature04624
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature07921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019519921
141 https://doi.org/10.1038/nature07921
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/s41467-017-01407-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092638667
144 https://doi.org/10.1038/s41467-017-01407-5
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/s41598-017-16982-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093099533
147 https://doi.org/10.1038/s41598-017-16982-2
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/s41598-018-32933-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1107235169
150 https://doi.org/10.1038/s41598-018-32933-x
151 rdf:type schema:CreativeWork
152 sg:pub.10.1140/epjb/e2015-60270-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022725918
153 https://doi.org/10.1140/epjb/e2015-60270-7
154 rdf:type schema:CreativeWork
155 https://app.dimensions.ai/details/publication/pub.1019104313 schema:CreativeWork
156 https://doi.org/10.1016/0022-0531(91)90048-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044834533
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.biosystems.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028970462
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.geb.2005.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049875532
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.geb.2006.03.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032558377
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.physa.2017.10.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092536458
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.physleta.2016.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009658240
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.physrep.2007.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037645265
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.physrep.2016.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015513417
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.physrep.2017.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085603416
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1017/cbo9780511806292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098668466
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.1108243108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041333761
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.1206681109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002387592
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1073/pnas.36.1.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011068067
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/0198283814.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098795381
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1098/rsif.2012.0997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052444945
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1098/rsif.2014.0735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047829818
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreve.58.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033246835
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physreve.97.062136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105020643
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1119/1.1848514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062237880
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1093411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014755623
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1133755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002913322
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2307/1911154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069639406
199 rdf:type schema:CreativeWork
200 https://doi.org/10.4171/emss/3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072316945
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.5477.1 schema:alternateName Utrecht University
203 schema:name Institute for Theoretical Physics and Center for Complex Systems Studies, Utrecht University, P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...