Anomalous acoustic phonons as the physical mechanism behind the adiabatic barocaloric effect on graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Ning Ma, Mario S. Reis

ABSTRACT

A graphene sheet is able to either heat up or cool down due to a mechanical strain: this is the adiabatic barocaloric effect. In order to understand the physical mechanism behind this effect, we have explored the adiabatic temperature change of the graphene and, for this purpose, we considered two contributions to the total entropy: a lattice entropy (depending on the transversal, longitudinal and anomalous out-of-plane acoustic phonons) and a strain entropy. We found that the adiabatic barocaloric effect only depends on the strain energy and the anomalous acoustic phonons, without terms due to the transversal and longitudinal acoustic phonons. More... »

PAGES

219

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7

DOI

http://dx.doi.org/10.1038/s41598-018-36525-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111418080

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30659225


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "Department of Physics, Taiyuan University of Technology, 030024, Taiyuan, China", 
            "Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Ning", 
        "id": "sg:person.010640444035.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640444035.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fluminense Federal University", 
          "id": "https://www.grid.ac/institutes/grid.411173.1", 
          "name": [
            "Institute of Physics, Fluminense Federal University, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niter\u00f3i-RJ, Brazil"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reis", 
        "givenName": "Mario S.", 
        "id": "sg:person.07611033454.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611033454.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.76.035439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005063860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.035439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005063860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011191271", 
          "https://doi.org/10.1038/nphys1420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.12678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019162292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.12678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019162292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2014.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019791381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adem.201100178", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022637294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.075501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024448782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.075501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024448782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030720491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4795863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058071393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.155413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.155413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.035408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.035408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.235419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.235419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.096105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.096105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.096105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1191700", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2017.02.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084101864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-13515-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092152834", 
          "https://doi.org/10.1038/s41598-017-13515-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "A graphene sheet is able to either heat up or cool down due to a mechanical strain: this is the adiabatic barocaloric effect. In order to understand the physical mechanism behind this effect, we have explored the adiabatic temperature change of the graphene and, for this purpose, we considered two contributions to the total entropy: a lattice entropy (depending on the transversal, longitudinal and anomalous out-of-plane acoustic phonons) and a strain entropy. We found that the adiabatic barocaloric effect only depends on the strain energy and the anomalous acoustic phonons, without terms due to the transversal and longitudinal acoustic phonons.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36525-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Anomalous acoustic phonons as the physical mechanism behind the adiabatic barocaloric effect on graphene", 
    "pagination": "219", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6ae012f3ac715ec0f0da2ec43fdb841e0475f7e611c62ea9720cf3c98706be1d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30659225"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36525-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111418080"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36525-7", 
      "https://app.dimensions.ai/details/publication/pub.1111418080"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65005_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36525-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      45 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36525-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N08e4ada6d0eb4f33ab879800ec8dd0ab
4 schema:citation sg:pub.10.1038/nphys1420
5 sg:pub.10.1038/s41598-017-13515-9
6 https://doi.org/10.1002/adem.201100178
7 https://doi.org/10.1016/j.jmmm.2014.06.010
8 https://doi.org/10.1016/j.physb.2017.02.034
9 https://doi.org/10.1016/j.physrep.2009.12.006
10 https://doi.org/10.1063/1.4795863
11 https://doi.org/10.1103/physrevb.59.12678
12 https://doi.org/10.1103/physrevb.76.035439
13 https://doi.org/10.1103/physrevb.79.155413
14 https://doi.org/10.1103/physrevb.81.035408
15 https://doi.org/10.1103/physrevb.93.235419
16 https://doi.org/10.1103/physrevlett.92.075501
17 https://doi.org/10.1103/physrevlett.95.096105
18 https://doi.org/10.1103/revmodphys.81.109
19 https://doi.org/10.1126/science.1191700
20 schema:datePublished 2019-12
21 schema:datePublishedReg 2019-12-01
22 schema:description A graphene sheet is able to either heat up or cool down due to a mechanical strain: this is the adiabatic barocaloric effect. In order to understand the physical mechanism behind this effect, we have explored the adiabatic temperature change of the graphene and, for this purpose, we considered two contributions to the total entropy: a lattice entropy (depending on the transversal, longitudinal and anomalous out-of-plane acoustic phonons) and a strain entropy. We found that the adiabatic barocaloric effect only depends on the strain energy and the anomalous acoustic phonons, without terms due to the transversal and longitudinal acoustic phonons.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N123e1d06805d48f99fa3416a837d4799
27 Nae51ce0ff50344bf95c7faab3642847f
28 sg:journal.1045337
29 schema:name Anomalous acoustic phonons as the physical mechanism behind the adiabatic barocaloric effect on graphene
30 schema:pagination 219
31 schema:productId N15ab2fd0ee2a45ef826fbdd0751af95c
32 Nacdd06d037e54b969d3de35323a0d2cf
33 Nb1f77a401f034aa79e83866cba326fdd
34 Nb9f7d4fe3b09416e9a8767d2a824ac61
35 Nf018085ab24b403e833551b9fbfb9dd3
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111418080
37 https://doi.org/10.1038/s41598-018-36525-7
38 schema:sdDatePublished 2019-04-11T08:43
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher Na79be94346b342259d0a89ba69ba79d8
41 schema:url https://www.nature.com/articles/s41598-018-36525-7
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N08e4ada6d0eb4f33ab879800ec8dd0ab rdf:first sg:person.010640444035.50
46 rdf:rest Nfc9a76bfe13b4ed0889546dda0236dfc
47 N123e1d06805d48f99fa3416a837d4799 schema:issueNumber 1
48 rdf:type schema:PublicationIssue
49 N15ab2fd0ee2a45ef826fbdd0751af95c schema:name nlm_unique_id
50 schema:value 101563288
51 rdf:type schema:PropertyValue
52 Na79be94346b342259d0a89ba69ba79d8 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 Nacdd06d037e54b969d3de35323a0d2cf schema:name pubmed_id
55 schema:value 30659225
56 rdf:type schema:PropertyValue
57 Nae51ce0ff50344bf95c7faab3642847f schema:volumeNumber 9
58 rdf:type schema:PublicationVolume
59 Nb1f77a401f034aa79e83866cba326fdd schema:name doi
60 schema:value 10.1038/s41598-018-36525-7
61 rdf:type schema:PropertyValue
62 Nb9f7d4fe3b09416e9a8767d2a824ac61 schema:name dimensions_id
63 schema:value pub.1111418080
64 rdf:type schema:PropertyValue
65 Nf018085ab24b403e833551b9fbfb9dd3 schema:name readcube_id
66 schema:value 6ae012f3ac715ec0f0da2ec43fdb841e0475f7e611c62ea9720cf3c98706be1d
67 rdf:type schema:PropertyValue
68 Nfc9a76bfe13b4ed0889546dda0236dfc rdf:first sg:person.07611033454.49
69 rdf:rest rdf:nil
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
74 schema:name Materials Engineering
75 rdf:type schema:DefinedTerm
76 sg:journal.1045337 schema:issn 2045-2322
77 schema:name Scientific Reports
78 rdf:type schema:Periodical
79 sg:person.010640444035.50 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
80 schema:familyName Ma
81 schema:givenName Ning
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640444035.50
83 rdf:type schema:Person
84 sg:person.07611033454.49 schema:affiliation https://www.grid.ac/institutes/grid.411173.1
85 schema:familyName Reis
86 schema:givenName Mario S.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611033454.49
88 rdf:type schema:Person
89 sg:pub.10.1038/nphys1420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011191271
90 https://doi.org/10.1038/nphys1420
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/s41598-017-13515-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152834
93 https://doi.org/10.1038/s41598-017-13515-9
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/adem.201100178 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022637294
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.jmmm.2014.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019791381
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.physb.2017.02.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084101864
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.physrep.2009.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030720491
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.4795863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058071393
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.59.12678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019162292
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.76.035439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005063860
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.79.155413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060628089
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.81.035408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631421
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.93.235419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650783
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.92.075501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024448782
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.95.096105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830811
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1126/science.1191700 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462530
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.411173.1 schema:alternateName Fluminense Federal University
124 schema:name Institute of Physics, Fluminense Federal University, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niterói-RJ, Brazil
125 rdf:type schema:Organization
126 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
127 schema:name Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, 710049, Xi’an, China
128 Department of Physics, Taiyuan University of Technology, 030024, Taiyuan, China
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...