Ontology type: schema:ScholarlyArticle Open Access: True
2019-12
AUTHORS ABSTRACTA graphene sheet is able to either heat up or cool down due to a mechanical strain: this is the adiabatic barocaloric effect. In order to understand the physical mechanism behind this effect, we have explored the adiabatic temperature change of the graphene and, for this purpose, we considered two contributions to the total entropy: a lattice entropy (depending on the transversal, longitudinal and anomalous out-of-plane acoustic phonons) and a strain entropy. We found that the adiabatic barocaloric effect only depends on the strain energy and the anomalous acoustic phonons, without terms due to the transversal and longitudinal acoustic phonons. More... »
PAGES219
http://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7
DOIhttp://dx.doi.org/10.1038/s41598-018-36525-7
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1111418080
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/30659225
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Xi'an Jiaotong University",
"id": "https://www.grid.ac/institutes/grid.43169.39",
"name": [
"Department of Physics, Taiyuan University of Technology, 030024, Taiyuan, China",
"Department of Applied Physics, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
],
"type": "Organization"
},
"familyName": "Ma",
"givenName": "Ning",
"id": "sg:person.010640444035.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010640444035.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Fluminense Federal University",
"id": "https://www.grid.ac/institutes/grid.411173.1",
"name": [
"Institute of Physics, Fluminense Federal University, Av. Gal. Milton Tavares de Souza s/n, 24210-346, Niter\u00f3i-RJ, Brazil"
],
"type": "Organization"
},
"familyName": "Reis",
"givenName": "Mario S.",
"id": "sg:person.07611033454.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07611033454.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1103/physrevb.76.035439",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005063860"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.76.035439",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005063860"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys1420",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011191271",
"https://doi.org/10.1038/nphys1420"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.59.12678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019162292"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.59.12678",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019162292"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.jmmm.2014.06.010",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019791381"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/adem.201100178",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022637294"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.92.075501",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024448782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.92.075501",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024448782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physrep.2009.12.006",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030720491"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.81.109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050408744"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/revmodphys.81.109",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050408744"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1063/1.4795863",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1058071393"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.79.155413",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060628089"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.79.155413",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060628089"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.81.035408",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060631421"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.81.035408",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060631421"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.93.235419",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060650783"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevb.93.235419",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060650783"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.95.096105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060830811"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.95.096105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060830811"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.95.096105",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060830811"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1191700",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062462530"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.physb.2017.02.034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084101864"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/s41598-017-13515-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1092152834",
"https://doi.org/10.1038/s41598-017-13515-9"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-12",
"datePublishedReg": "2019-12-01",
"description": "A graphene sheet is able to either heat up or cool down due to a mechanical strain: this is the adiabatic barocaloric effect. In order to understand the physical mechanism behind this effect, we have explored the adiabatic temperature change of the graphene and, for this purpose, we considered two contributions to the total entropy: a lattice entropy (depending on the transversal, longitudinal and anomalous out-of-plane acoustic phonons) and a strain entropy. We found that the adiabatic barocaloric effect only depends on the strain energy and the anomalous acoustic phonons, without terms due to the transversal and longitudinal acoustic phonons.",
"genre": "research_article",
"id": "sg:pub.10.1038/s41598-018-36525-7",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1045337",
"issn": [
"2045-2322"
],
"name": "Scientific Reports",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "9"
}
],
"name": "Anomalous acoustic phonons as the physical mechanism behind the adiabatic barocaloric effect on graphene",
"pagination": "219",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"6ae012f3ac715ec0f0da2ec43fdb841e0475f7e611c62ea9720cf3c98706be1d"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"30659225"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"101563288"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1038/s41598-018-36525-7"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1111418080"
]
}
],
"sameAs": [
"https://doi.org/10.1038/s41598-018-36525-7",
"https://app.dimensions.ai/details/publication/pub.1111418080"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T08:43",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000322_0000000322/records_65005_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://www.nature.com/articles/s41598-018-36525-7"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36525-7'
This table displays all metadata directly associated to this object as RDF triples.
129 TRIPLES
21 PREDICATES
45 URIs
21 LITERALS
9 BLANK NODES