Phase controlled SERS enhancement View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Yuanhui Zheng, Lorenzo Rosa, Thibaut Thai, Soon Hock Ng, Saulius Juodkazis, Udo Bach

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Several studies have shown that SERS intensities are significantly increased when an optical interference substrate composed of a dielectric spacer and a reflector is used as a supporting substrate. However, the origin of this additional enhancement has not been systematically studied. In this paper, high sensitivity SERS substrates composed of self-assembled core-satellite nanostructures and silica-coated silicon interference layers have been developed. Their SERS enhancement is shown to be a function of the thickness of silica spacer on a more reflective silicon substrate. Finite difference time domain modeling is presented to show that the SERS enhancement is due to a spacer contribution via a sign change of the reflection coefficients at the interfaces. The magnitude of the local-field enhancement is defined by the interference of light reflected from the silica-air and silica-silicon interfaces, which constructively added at the hot spots providing a possibility to maximize intensity in the nanogaps between the self-assembled nanoparticles by changing the thickness of silica layer. The core-satellite assemblies on a 135 nm silica-coated silicon substrate exhibit a SERS activity of approximately 13 times higher than the glass substrate. More... »

PAGES

744

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36491-0

DOI

http://dx.doi.org/10.1038/s41598-018-36491-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111648142

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30679465


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Melbourne Centre for Nanofabrication", 
          "id": "https://www.grid.ac/institutes/grid.410660.5", 
          "name": [
            "State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, China", 
            "Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization, 3169, Clayton South, Victoria, Australia", 
            "The Melbourne Centre for Nanofabrication, 151 Wellington Road, 3168, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Yuanhui", 
        "id": "sg:person.01366570767.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366570767.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Modena and Reggio Emilia", 
          "id": "https://www.grid.ac/institutes/grid.7548.e", 
          "name": [
            "Swinburne University of Technology, Centre for Micro-Photonics (H74), P.O. Box 218, 3122, Hawthorn, Victoria, Australia", 
            "Department of Engineering \u201cEnzo Ferrari\u201d, University of Modena and Reggio Emilia, via Vivarelli 10, I-41125, Modena, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosa", 
        "givenName": "Lorenzo", 
        "id": "sg:person.01336202236.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336202236.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "The Melbourne Centre for Nanofabrication, 151 Wellington Road, 3168, Clayton, Victoria, Australia", 
            "Department of Materials Engineering, Monash University, Wellington Road, 3800, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thai", 
        "givenName": "Thibaut", 
        "id": "sg:person.0661441077.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661441077.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "The Melbourne Centre for Nanofabrication, 151 Wellington Road, 3168, Clayton, Victoria, Australia", 
            "Department of Materials Engineering, Monash University, Wellington Road, 3800, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ng", 
        "givenName": "Soon Hock", 
        "id": "sg:person.0775667477.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775667477.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Swinburne University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.1027.4", 
          "name": [
            "The Melbourne Centre for Nanofabrication, 151 Wellington Road, 3168, Clayton, Victoria, Australia", 
            "Swinburne University of Technology, Centre for Micro-Photonics (H74), P.O. Box 218, 3122, Hawthorn, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Juodkazis", 
        "givenName": "Saulius", 
        "id": "sg:person.01015403637.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015403637.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Monash University", 
          "id": "https://www.grid.ac/institutes/grid.1002.3", 
          "name": [
            "Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization, 3169, Clayton South, Victoria, Australia", 
            "The Melbourne Centre for Nanofabrication, 151 Wellington Road, 3168, Clayton, Victoria, Australia", 
            "Department of Materials Engineering, Monash University, Wellington Road, 3800, Clayton, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bach", 
        "givenName": "Udo", 
        "id": "sg:person.01245463537.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245463537.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200901139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003397634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200901139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003397634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201202073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003879680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005612479", 
          "https://doi.org/10.1038/srep02335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13320-012-0073-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006419884", 
          "https://doi.org/10.1007/s13320-012-0073-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008216287", 
          "https://doi.org/10.1038/nmat2596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008216287", 
          "https://doi.org/10.1038/nmat2596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2006.03.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008368607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201404107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008727002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009366683", 
          "https://doi.org/10.1038/srep00112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200305830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012395229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201301837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013043155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac0613582", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021436386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201202830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022160788"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4sc03508a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024901403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025850187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1187949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025850187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201006991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031938813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0687908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032228733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0687908", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032228733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr02924g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034202460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2014.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038121521", 
          "https://doi.org/10.1038/nphoton.2014.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200801239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039184094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ta05307a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045096204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn103172t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048367309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049121722", 
          "https://doi.org/10.1038/ncomms2289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1159499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050535123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn101431k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050959529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl3000453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052204461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b04864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055137335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp207821t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056085400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp207821t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056085400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2010862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl2010862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056218597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.457721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058035733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.4318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.4318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.4357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060820384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.001648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065195673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.41.005495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065239992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/000370209787392102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065257723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/000370209787392102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065257723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jrs.5190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090370641"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Several studies have shown that SERS intensities are significantly increased when an optical interference substrate composed of a dielectric spacer and a reflector is used as a supporting substrate. However, the origin of this additional enhancement has not been systematically studied. In this paper, high sensitivity SERS substrates composed of self-assembled core-satellite nanostructures and silica-coated silicon interference layers have been developed. Their SERS enhancement is shown to be a function of the thickness of silica spacer on a more reflective silicon substrate. Finite difference time domain modeling is presented to show that the SERS enhancement is due to a spacer contribution via a sign change of the reflection coefficients at the interfaces. The magnitude of the local-field enhancement is defined by the interference of light reflected from the silica-air and silica-silicon interfaces, which constructively added at the hot spots providing a possibility to maximize intensity in the nanogaps between the self-assembled nanoparticles by changing the thickness of silica layer. The core-satellite assemblies on a 135\u2009nm silica-coated silicon substrate exhibit a SERS activity of approximately 13 times higher than the glass substrate.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36491-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Phase controlled SERS enhancement", 
    "pagination": "744", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "af8b4cea6887828a4986d57cd26ebff78630d61ad985213cc8cbf904038ac25c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30679465"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36491-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111648142"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36491-0", 
      "https://app.dimensions.ai/details/publication/pub.1111648142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:59", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68481_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36491-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36491-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36491-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36491-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36491-0'


 

This table displays all metadata directly associated to this object as RDF triples.

229 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36491-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N1a2b5cdc893d4e56b135df747be4fc48
4 schema:citation sg:pub.10.1007/s13320-012-0073-4
5 sg:pub.10.1038/ncomms2289
6 sg:pub.10.1038/nmat2596
7 sg:pub.10.1038/nphoton.2014.143
8 sg:pub.10.1038/srep00112
9 sg:pub.10.1038/srep02335
10 https://doi.org/10.1002/adfm.200801239
11 https://doi.org/10.1002/adfm.201202073
12 https://doi.org/10.1002/adfm.201301837
13 https://doi.org/10.1002/adma.200305830
14 https://doi.org/10.1002/adma.200901139
15 https://doi.org/10.1002/adma.201202830
16 https://doi.org/10.1002/adma.201404107
17 https://doi.org/10.1002/anie.201006991
18 https://doi.org/10.1002/jrs.5190
19 https://doi.org/10.1016/j.cplett.2006.03.042
20 https://doi.org/10.1021/ac0613582
21 https://doi.org/10.1021/acsnano.5b04864
22 https://doi.org/10.1021/jp0687908
23 https://doi.org/10.1021/jp207821t
24 https://doi.org/10.1021/nl2010862
25 https://doi.org/10.1021/nl3000453
26 https://doi.org/10.1021/nn101431k
27 https://doi.org/10.1021/nn103172t
28 https://doi.org/10.1039/c3nr02924g
29 https://doi.org/10.1039/c4sc03508a
30 https://doi.org/10.1039/c4ta05307a
31 https://doi.org/10.1063/1.457721
32 https://doi.org/10.1103/physreve.62.4318
33 https://doi.org/10.1103/physrevlett.83.4357
34 https://doi.org/10.1126/science.1159499
35 https://doi.org/10.1126/science.1187949
36 https://doi.org/10.1364/oe.19.001648
37 https://doi.org/10.1364/ol.41.005495
38 https://doi.org/10.1366/000370209787392102
39 schema:datePublished 2019-12
40 schema:datePublishedReg 2019-12-01
41 schema:description Surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest for chemical and biochemical sensing. Several studies have shown that SERS intensities are significantly increased when an optical interference substrate composed of a dielectric spacer and a reflector is used as a supporting substrate. However, the origin of this additional enhancement has not been systematically studied. In this paper, high sensitivity SERS substrates composed of self-assembled core-satellite nanostructures and silica-coated silicon interference layers have been developed. Their SERS enhancement is shown to be a function of the thickness of silica spacer on a more reflective silicon substrate. Finite difference time domain modeling is presented to show that the SERS enhancement is due to a spacer contribution via a sign change of the reflection coefficients at the interfaces. The magnitude of the local-field enhancement is defined by the interference of light reflected from the silica-air and silica-silicon interfaces, which constructively added at the hot spots providing a possibility to maximize intensity in the nanogaps between the self-assembled nanoparticles by changing the thickness of silica layer. The core-satellite assemblies on a 135 nm silica-coated silicon substrate exhibit a SERS activity of approximately 13 times higher than the glass substrate.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N02c1e89416e0431ab0d63c7fca12b854
46 N7c74d777188c4fe2b4157f3546627e78
47 sg:journal.1045337
48 schema:name Phase controlled SERS enhancement
49 schema:pagination 744
50 schema:productId N21c7f71a9ed349a3b4f8a827cfd932a2
51 N24831d5a7cff4185b13c4dc2bcff4777
52 N496e276a8ba34c8199adda77b15a4b65
53 Nc62d471da901429ead26f1ba43f8625e
54 Ne5c55409aa67462891d79ae98058bb48
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111648142
56 https://doi.org/10.1038/s41598-018-36491-0
57 schema:sdDatePublished 2019-04-11T08:59
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N7d80b0d1432d4064ba79ab285878298e
60 schema:url https://www.nature.com/articles/s41598-018-36491-0
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N02c1e89416e0431ab0d63c7fca12b854 schema:issueNumber 1
65 rdf:type schema:PublicationIssue
66 N1a2b5cdc893d4e56b135df747be4fc48 rdf:first sg:person.01366570767.64
67 rdf:rest Nf0e7199e179942ee9f04aa08b154ce96
68 N21c7f71a9ed349a3b4f8a827cfd932a2 schema:name readcube_id
69 schema:value af8b4cea6887828a4986d57cd26ebff78630d61ad985213cc8cbf904038ac25c
70 rdf:type schema:PropertyValue
71 N244c44afa25d435889a3c78461c285fe rdf:first sg:person.01245463537.23
72 rdf:rest rdf:nil
73 N24831d5a7cff4185b13c4dc2bcff4777 schema:name pubmed_id
74 schema:value 30679465
75 rdf:type schema:PropertyValue
76 N2ac24f2140304cf091b9faf9fc8c6839 rdf:first sg:person.01015403637.00
77 rdf:rest N244c44afa25d435889a3c78461c285fe
78 N496e276a8ba34c8199adda77b15a4b65 schema:name nlm_unique_id
79 schema:value 101563288
80 rdf:type schema:PropertyValue
81 N7c74d777188c4fe2b4157f3546627e78 schema:volumeNumber 9
82 rdf:type schema:PublicationVolume
83 N7d80b0d1432d4064ba79ab285878298e schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N9e8ab84c100f44e5b4a94624c7ca08e2 rdf:first sg:person.0661441077.18
86 rdf:rest Nb2267cd5ecf64de3b8d8b570ce27e7a7
87 Nb2267cd5ecf64de3b8d8b570ce27e7a7 rdf:first sg:person.0775667477.07
88 rdf:rest N2ac24f2140304cf091b9faf9fc8c6839
89 Nc62d471da901429ead26f1ba43f8625e schema:name doi
90 schema:value 10.1038/s41598-018-36491-0
91 rdf:type schema:PropertyValue
92 Ne5c55409aa67462891d79ae98058bb48 schema:name dimensions_id
93 schema:value pub.1111648142
94 rdf:type schema:PropertyValue
95 Nf0e7199e179942ee9f04aa08b154ce96 rdf:first sg:person.01336202236.24
96 rdf:rest N9e8ab84c100f44e5b4a94624c7ca08e2
97 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
98 schema:name Chemical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Chemistry (incl. Structural)
102 rdf:type schema:DefinedTerm
103 sg:journal.1045337 schema:issn 2045-2322
104 schema:name Scientific Reports
105 rdf:type schema:Periodical
106 sg:person.01015403637.00 schema:affiliation https://www.grid.ac/institutes/grid.1027.4
107 schema:familyName Juodkazis
108 schema:givenName Saulius
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01015403637.00
110 rdf:type schema:Person
111 sg:person.01245463537.23 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
112 schema:familyName Bach
113 schema:givenName Udo
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245463537.23
115 rdf:type schema:Person
116 sg:person.01336202236.24 schema:affiliation https://www.grid.ac/institutes/grid.7548.e
117 schema:familyName Rosa
118 schema:givenName Lorenzo
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336202236.24
120 rdf:type schema:Person
121 sg:person.01366570767.64 schema:affiliation https://www.grid.ac/institutes/grid.410660.5
122 schema:familyName Zheng
123 schema:givenName Yuanhui
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366570767.64
125 rdf:type schema:Person
126 sg:person.0661441077.18 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
127 schema:familyName Thai
128 schema:givenName Thibaut
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661441077.18
130 rdf:type schema:Person
131 sg:person.0775667477.07 schema:affiliation https://www.grid.ac/institutes/grid.1002.3
132 schema:familyName Ng
133 schema:givenName Soon Hock
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775667477.07
135 rdf:type schema:Person
136 sg:pub.10.1007/s13320-012-0073-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006419884
137 https://doi.org/10.1007/s13320-012-0073-4
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/ncomms2289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049121722
140 https://doi.org/10.1038/ncomms2289
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nmat2596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008216287
143 https://doi.org/10.1038/nmat2596
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nphoton.2014.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038121521
146 https://doi.org/10.1038/nphoton.2014.143
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/srep00112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009366683
149 https://doi.org/10.1038/srep00112
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep02335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005612479
152 https://doi.org/10.1038/srep02335
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1002/adfm.200801239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039184094
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/adfm.201202073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003879680
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/adfm.201301837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013043155
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/adma.200305830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012395229
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/adma.200901139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003397634
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/adma.201202830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022160788
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/adma.201404107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008727002
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/anie.201006991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031938813
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1002/jrs.5190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090370641
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.cplett.2006.03.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008368607
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/ac0613582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021436386
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/acsnano.5b04864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055137335
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/jp0687908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032228733
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/jp207821t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056085400
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/nl2010862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056218597
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/nl3000453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052204461
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/nn101431k schema:sameAs https://app.dimensions.ai/details/publication/pub.1050959529
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/nn103172t schema:sameAs https://app.dimensions.ai/details/publication/pub.1048367309
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1039/c3nr02924g schema:sameAs https://app.dimensions.ai/details/publication/pub.1034202460
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1039/c4sc03508a schema:sameAs https://app.dimensions.ai/details/publication/pub.1024901403
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/c4ta05307a schema:sameAs https://app.dimensions.ai/details/publication/pub.1045096204
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1063/1.457721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035733
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physreve.62.4318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060725701
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.83.4357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060820384
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1159499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050535123
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1187949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025850187
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1364/oe.19.001648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065195673
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1364/ol.41.005495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065239992
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1366/000370209787392102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065257723
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.1002.3 schema:alternateName Monash University
213 schema:name Department of Materials Engineering, Monash University, Wellington Road, 3800, Clayton, Victoria, Australia
214 Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization, 3169, Clayton South, Victoria, Australia
215 The Melbourne Centre for Nanofabrication, 151 Wellington Road, 3168, Clayton, Victoria, Australia
216 rdf:type schema:Organization
217 https://www.grid.ac/institutes/grid.1027.4 schema:alternateName Swinburne University of Technology
218 schema:name Swinburne University of Technology, Centre for Micro-Photonics (H74), P.O. Box 218, 3122, Hawthorn, Victoria, Australia
219 The Melbourne Centre for Nanofabrication, 151 Wellington Road, 3168, Clayton, Victoria, Australia
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.410660.5 schema:alternateName Melbourne Centre for Nanofabrication
222 schema:name Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization, 3169, Clayton South, Victoria, Australia
223 State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, China
224 The Melbourne Centre for Nanofabrication, 151 Wellington Road, 3168, Clayton, Victoria, Australia
225 rdf:type schema:Organization
226 https://www.grid.ac/institutes/grid.7548.e schema:alternateName University of Modena and Reggio Emilia
227 schema:name Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, via Vivarelli 10, I-41125, Modena, Italy
228 Swinburne University of Technology, Centre for Micro-Photonics (H74), P.O. Box 218, 3122, Hawthorn, Victoria, Australia
229 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...