High-temperature operation of a silicon qubit View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Keiji Ono, Takahiro Mori, Satoshi Moriyama

ABSTRACT

This study alleviates the low operating temperature constraint of Si qubits. A qubit is a key element for quantum sensors, memories, and computers. Electron spin in Si is a promising qubit, as it allows both long coherence times and potential compatibility with current silicon technology. Si qubits have been implemented using gate-defined quantum dots or shallow impurities. However, operation of Si qubits has been restricted to milli-Kelvin temperatures, thus limiting the application of the quantum technology. In this study, we addressed a single deep impurity, having strong electron confinement of up to 0.3 eV, using single-electron tunnelling transport. We also achieved qubit operation at 5-10 K through a spin-blockade effect based on the tunnelling transport via two impurities. The deep impurity was implemented by tunnel field-effect transistors (TFETs) instead of conventional FETs. With further improvement in fabrication and controllability, this work presents the possibility of operating silicon spin qubits at elevated temperatures. More... »

PAGES

469

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36476-z

DOI

http://dx.doi.org/10.1038/s41598-018-36476-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111640656

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30679469


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "RIKEN", 
          "id": "https://www.grid.ac/institutes/grid.7597.c", 
          "name": [
            "Advanced Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ono", 
        "givenName": "Keiji", 
        "id": "sg:person.015006326625.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006326625.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute of Advanced Industrial Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.208504.b", 
          "name": [
            "Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, 305-8568, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mori", 
        "givenName": "Takahiro", 
        "id": "sg:person.010554673435.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554673435.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "International Center for Materials Nanoarchitectonics (WPI\u2013MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moriyama", 
        "givenName": "Satoshi", 
        "id": "sg:person.016014051441.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016014051441.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000618748", 
          "https://doi.org/10.1038/nphys994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.230503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001218439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.230503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001218439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/27617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001629854", 
          "https://doi.org/10.1038/27617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/27617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001629854", 
          "https://doi.org/10.1038/27617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002891099", 
          "https://doi.org/10.1038/nnano.2014.153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.165319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005491986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.165319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005491986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature15263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007091191", 
          "https://doi.org/10.1038/nature15263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms13575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993264", 
          "https://doi.org/10.1038/ncomms13575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4913610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021782338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024275221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.206805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024275221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.040505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024991654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.040505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024991654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025017498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.61.2961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025017498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026419218", 
          "https://doi.org/10.1038/nature02693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026419218", 
          "https://doi.org/10.1038/nature02693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027074944", 
          "https://doi.org/10.1038/nnano.2014.216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028301919", 
          "https://doi.org/10.1038/nnano.2009.373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028301919", 
          "https://doi.org/10.1038/nnano.2009.373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028965979", 
          "https://doi.org/10.1038/ncomms4860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041105198", 
          "https://doi.org/10.1038/nature05065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041105198", 
          "https://doi.org/10.1038/nature05065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microrel.2005.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042713442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microrel.2005.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042713442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.161203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047019233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.161203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047019233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048502366", 
          "https://doi.org/10.1038/nature10679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4526(01)01411-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048601976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051948012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051948012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901635j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl901635j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19950082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056781671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2790776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057867431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3226633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057921131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.333341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057937925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.21.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060527057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.21.2401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060527057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.13469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.13469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060560917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.125413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.92.125413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060647250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.136802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.136802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060761347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.4702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.590196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062200242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1600694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062440182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1061797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062446465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aal2469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062669050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/jjap.56.04cd02", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083798863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41534-017-0038-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091313335", 
          "https://doi.org/10.1038/s41534-017-0038-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00378-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091456732", 
          "https://doi.org/10.1038/s41467-017-00378-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iedm.2016.7838453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093877871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vlsit.2014.6894370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094601400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aao5965", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099616044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.045405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100180184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.97.045405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100180184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aar4054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100651554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101019938", 
          "https://doi.org/10.1038/nature25766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101019938", 
          "https://doi.org/10.1038/nature25766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101019939", 
          "https://doi.org/10.1038/nature25769"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature25769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101019939", 
          "https://doi.org/10.1038/nature25769"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "This study alleviates the low operating temperature constraint of Si qubits. A qubit is a key element for quantum sensors, memories, and computers. Electron spin in Si is a promising qubit, as it allows both long coherence times and potential compatibility with current silicon technology. Si qubits have been implemented using gate-defined quantum dots or shallow impurities. However, operation of Si qubits has been restricted to milli-Kelvin temperatures, thus limiting the application of the quantum technology. In this study, we addressed a single deep impurity, having strong electron confinement of up to 0.3\u2009eV, using single-electron tunnelling transport. We also achieved qubit operation at 5-10\u2009K through a spin-blockade effect based on the tunnelling transport via two impurities. The deep impurity was implemented by tunnel field-effect transistors (TFETs) instead of conventional FETs. With further improvement in fabrication and controllability, this work presents the possibility of operating silicon spin qubits at elevated temperatures.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36476-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5852725", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5865033", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6819602", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5901216", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "High-temperature operation of a silicon qubit", 
    "pagination": "469", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49875c2587ae676eae55c5435b37c02a37455666ec14d79821df9b1460d937f1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30679469"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36476-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111640656"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36476-z", 
      "https://app.dimensions.ai/details/publication/pub.1111640656"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68444_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36476-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36476-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36476-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36476-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36476-z'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36476-z schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author N096a175e078b4e5b87148f5b89f2a478
4 schema:citation sg:pub.10.1038/27617
5 sg:pub.10.1038/nature02693
6 sg:pub.10.1038/nature05065
7 sg:pub.10.1038/nature10679
8 sg:pub.10.1038/nature15263
9 sg:pub.10.1038/nature25766
10 sg:pub.10.1038/nature25769
11 sg:pub.10.1038/ncomms13575
12 sg:pub.10.1038/ncomms4860
13 sg:pub.10.1038/nnano.2009.373
14 sg:pub.10.1038/nnano.2014.153
15 sg:pub.10.1038/nnano.2014.216
16 sg:pub.10.1038/nphys994
17 sg:pub.10.1038/s41467-017-00378-x
18 sg:pub.10.1038/s41534-017-0038-y
19 https://doi.org/10.1016/j.microrel.2005.08.001
20 https://doi.org/10.1016/s0921-4526(01)01411-9
21 https://doi.org/10.1021/nl901635j
22 https://doi.org/10.1049/el:19950082
23 https://doi.org/10.1063/1.2790776
24 https://doi.org/10.1063/1.3226633
25 https://doi.org/10.1063/1.333341
26 https://doi.org/10.1063/1.4913610
27 https://doi.org/10.1103/physrevb.21.2401
28 https://doi.org/10.1103/physrevb.45.13469
29 https://doi.org/10.1103/physrevb.61.2961
30 https://doi.org/10.1103/physrevb.74.165319
31 https://doi.org/10.1103/physrevb.81.161203
32 https://doi.org/10.1103/physrevb.92.125413
33 https://doi.org/10.1103/physrevb.97.045405
34 https://doi.org/10.1103/physrevlett.106.040505
35 https://doi.org/10.1103/physrevlett.110.136802
36 https://doi.org/10.1103/physrevlett.74.4702
37 https://doi.org/10.1103/physrevlett.97.206805
38 https://doi.org/10.1103/physrevlett.98.230503
39 https://doi.org/10.1103/revmodphys.85.961
40 https://doi.org/10.1109/iedm.2016.7838453
41 https://doi.org/10.1109/vlsit.2014.6894370
42 https://doi.org/10.1116/1.590196
43 https://doi.org/10.1126/sciadv.1600694
44 https://doi.org/10.1126/science.1061797
45 https://doi.org/10.1126/science.1070958
46 https://doi.org/10.1126/science.aal2469
47 https://doi.org/10.1126/science.aao5965
48 https://doi.org/10.1126/science.aar4054
49 https://doi.org/10.7567/jjap.56.04cd02
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description This study alleviates the low operating temperature constraint of Si qubits. A qubit is a key element for quantum sensors, memories, and computers. Electron spin in Si is a promising qubit, as it allows both long coherence times and potential compatibility with current silicon technology. Si qubits have been implemented using gate-defined quantum dots or shallow impurities. However, operation of Si qubits has been restricted to milli-Kelvin temperatures, thus limiting the application of the quantum technology. In this study, we addressed a single deep impurity, having strong electron confinement of up to 0.3 eV, using single-electron tunnelling transport. We also achieved qubit operation at 5-10 K through a spin-blockade effect based on the tunnelling transport via two impurities. The deep impurity was implemented by tunnel field-effect transistors (TFETs) instead of conventional FETs. With further improvement in fabrication and controllability, this work presents the possibility of operating silicon spin qubits at elevated temperatures.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N706e45adc323438eacc3d4619be641d8
57 Nf6e0635b3b334e37a4a720ac596c1cab
58 sg:journal.1045337
59 schema:name High-temperature operation of a silicon qubit
60 schema:pagination 469
61 schema:productId N0eca4b71fd514d408b73f6aa895314d9
62 N3b2dc947746f42749d9bbdffa3e7429a
63 N79d057e4042a498f9edebe8059269f23
64 Na96161d8e96a47c282b6ad20d0732952
65 Ndee12b82fb34464285b0a4b8581b4d3d
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111640656
67 https://doi.org/10.1038/s41598-018-36476-z
68 schema:sdDatePublished 2019-04-11T08:58
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher Nce3a44cee1004297929e9013c447d0bc
71 schema:url https://www.nature.com/articles/s41598-018-36476-z
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N096a175e078b4e5b87148f5b89f2a478 rdf:first sg:person.015006326625.68
76 rdf:rest N9acf9782b5714a1899869e1b6788b486
77 N0eca4b71fd514d408b73f6aa895314d9 schema:name pubmed_id
78 schema:value 30679469
79 rdf:type schema:PropertyValue
80 N3b2dc947746f42749d9bbdffa3e7429a schema:name nlm_unique_id
81 schema:value 101563288
82 rdf:type schema:PropertyValue
83 N706e45adc323438eacc3d4619be641d8 schema:volumeNumber 9
84 rdf:type schema:PublicationVolume
85 N79d057e4042a498f9edebe8059269f23 schema:name doi
86 schema:value 10.1038/s41598-018-36476-z
87 rdf:type schema:PropertyValue
88 N9acf9782b5714a1899869e1b6788b486 rdf:first sg:person.010554673435.41
89 rdf:rest Nebef799a0c824b9fa3923294befc5f4f
90 Na96161d8e96a47c282b6ad20d0732952 schema:name readcube_id
91 schema:value 49875c2587ae676eae55c5435b37c02a37455666ec14d79821df9b1460d937f1
92 rdf:type schema:PropertyValue
93 Nce3a44cee1004297929e9013c447d0bc schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Ndee12b82fb34464285b0a4b8581b4d3d schema:name dimensions_id
96 schema:value pub.1111640656
97 rdf:type schema:PropertyValue
98 Nebef799a0c824b9fa3923294befc5f4f rdf:first sg:person.016014051441.06
99 rdf:rest rdf:nil
100 Nf6e0635b3b334e37a4a720ac596c1cab schema:issueNumber 1
101 rdf:type schema:PublicationIssue
102 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
103 schema:name Physical Sciences
104 rdf:type schema:DefinedTerm
105 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
106 schema:name Condensed Matter Physics
107 rdf:type schema:DefinedTerm
108 sg:grant.5852725 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36476-z
109 rdf:type schema:MonetaryGrant
110 sg:grant.5865033 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36476-z
111 rdf:type schema:MonetaryGrant
112 sg:grant.5901216 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36476-z
113 rdf:type schema:MonetaryGrant
114 sg:grant.6819602 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36476-z
115 rdf:type schema:MonetaryGrant
116 sg:journal.1045337 schema:issn 2045-2322
117 schema:name Scientific Reports
118 rdf:type schema:Periodical
119 sg:person.010554673435.41 schema:affiliation https://www.grid.ac/institutes/grid.208504.b
120 schema:familyName Mori
121 schema:givenName Takahiro
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554673435.41
123 rdf:type schema:Person
124 sg:person.015006326625.68 schema:affiliation https://www.grid.ac/institutes/grid.7597.c
125 schema:familyName Ono
126 schema:givenName Keiji
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015006326625.68
128 rdf:type schema:Person
129 sg:person.016014051441.06 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
130 schema:familyName Moriyama
131 schema:givenName Satoshi
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016014051441.06
133 rdf:type schema:Person
134 sg:pub.10.1038/27617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001629854
135 https://doi.org/10.1038/27617
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nature02693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026419218
138 https://doi.org/10.1038/nature02693
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/nature05065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041105198
141 https://doi.org/10.1038/nature05065
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/nature10679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048502366
144 https://doi.org/10.1038/nature10679
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/nature15263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007091191
147 https://doi.org/10.1038/nature15263
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/nature25766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101019938
150 https://doi.org/10.1038/nature25766
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nature25769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101019939
153 https://doi.org/10.1038/nature25769
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/ncomms13575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009993264
156 https://doi.org/10.1038/ncomms13575
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/ncomms4860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028965979
159 https://doi.org/10.1038/ncomms4860
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nnano.2009.373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028301919
162 https://doi.org/10.1038/nnano.2009.373
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nnano.2014.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002891099
165 https://doi.org/10.1038/nnano.2014.153
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nnano.2014.216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027074944
168 https://doi.org/10.1038/nnano.2014.216
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nphys994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000618748
171 https://doi.org/10.1038/nphys994
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/s41467-017-00378-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091456732
174 https://doi.org/10.1038/s41467-017-00378-x
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/s41534-017-0038-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091313335
177 https://doi.org/10.1038/s41534-017-0038-y
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.microrel.2005.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042713442
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0921-4526(01)01411-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048601976
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1021/nl901635j schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222034
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1049/el:19950082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056781671
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.2790776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057867431
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1063/1.3226633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057921131
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1063/1.333341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057937925
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.4913610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021782338
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevb.21.2401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060527057
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevb.45.13469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060560917
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/physrevb.61.2961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025017498
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.74.165319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005491986
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.81.161203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047019233
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevb.92.125413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060647250
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1103/physrevb.97.045405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100180184
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physrevlett.106.040505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024991654
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevlett.110.136802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060761347
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevlett.74.4702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811210
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevlett.97.206805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024275221
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevlett.98.230503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001218439
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/revmodphys.85.961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051948012
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1109/iedm.2016.7838453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093877871
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1109/vlsit.2014.6894370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094601400
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1116/1.590196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062200242
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/sciadv.1600694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062440182
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.1061797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445141
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.1070958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062446465
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.aal2469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062669050
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.aao5965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099616044
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1126/science.aar4054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100651554
238 rdf:type schema:CreativeWork
239 https://doi.org/10.7567/jjap.56.04cd02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083798863
240 rdf:type schema:CreativeWork
241 https://www.grid.ac/institutes/grid.208504.b schema:alternateName National Institute of Advanced Industrial Science and Technology
242 schema:name Nanoelectronics Research Institute (NeRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, 305-8568, Tsukuba, Ibaraki, Japan
243 rdf:type schema:Organization
244 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
245 schema:name International Center for Materials Nanoarchitectonics (WPI–MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, 305-0044, Tsukuba, Ibaraki, Japan
246 rdf:type schema:Organization
247 https://www.grid.ac/institutes/grid.7597.c schema:alternateName RIKEN
248 schema:name Advanced Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, 351-0198, Saitama, Japan
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...