Solid-diffusion-facilitated cleaning of copper foil improves the quality of CVD graphene View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-22

AUTHORS

Dinh-Tuan Nguyen, Wan-Yu Chiang, Yen-Hsun Su, Mario Hofmann, Ya-Ping Hsieh

ABSTRACT

The quality of CVD-grown graphene is limited by the parallel nucleation of grains from surface impurities which leads to increased grain boundary densities. Currently employed cleaning methods cannot completely remove surface impurities since impurity diffusion from the bulk to the surface occurs during growth. We here introduce a new method to remove impurities not only on the surface but also from the bulk. By employing a solid cap during annealing that acts as a sink for impurities and leads to an enhancement of copper purity throughout the catalyst thickness. The high efficiency of the solid-diffusion-based transport pathway results in a drastic decrease in the surface particle concentration in a relatively short time, as evident in AFM and SIMS characterization of copper foils. Graphene grown on those substrates displays enhanced grain sizes and room-temperature, large-area carrier mobilities in excess of 5000 cm2/Vs which emphasizes the suitability of our approach for future graphene applications. More... »

PAGES

257

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36390-4

DOI

http://dx.doi.org/10.1038/s41598-018-36390-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111606496

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30670729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.64523.36", 
          "name": [
            "Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nguyen", 
        "givenName": "Dinh-Tuan", 
        "id": "sg:person.016133433441.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016133433441.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi, 62102 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.412047.4", 
          "name": [
            "Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi, 62102 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chiang", 
        "givenName": "Wan-Yu", 
        "id": "sg:person.01360627401.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360627401.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.64523.36", 
          "name": [
            "Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Yen-Hsun", 
        "id": "sg:person.011717620154.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011717620154.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, National Taiwan University, Taipei, 10617 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.19188.39", 
          "name": [
            "Department of Physics, National Taiwan University, Taipei, 10617 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hofmann", 
        "givenName": "Mario", 
        "id": "sg:person.0740631037.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740631037.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Atomic and Molecular Science, Academia Sinica, Taipei, 10617 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.28665.3f", 
          "name": [
            "Institute for Atomic and Molecular Science, Academia Sinica, Taipei, 10617 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hsieh", 
        "givenName": "Ya-Ping", 
        "id": "sg:person.01006744237.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006744237.62"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12274-012-0227-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009003760", 
          "https://doi.org/10.1007/s12274-012-0227-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x17100064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092914458", 
          "https://doi.org/10.1134/s0031918x17100064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043061353", 
          "https://doi.org/10.1038/srep00337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029669947", 
          "https://doi.org/10.1038/ncomms3096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027275519", 
          "https://doi.org/10.1038/nature09405"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-22", 
    "datePublishedReg": "2019-01-22", 
    "description": "The quality of CVD-grown graphene is limited by the parallel nucleation of grains from surface impurities which leads to increased grain boundary densities. Currently employed cleaning methods cannot completely remove surface impurities since impurity diffusion from the bulk to the surface occurs during growth. We here introduce a new method to remove impurities not only on the surface but also from the bulk. By employing a solid cap during annealing that acts as a sink for impurities and leads to an enhancement of copper purity throughout the catalyst thickness. The high efficiency of the solid-diffusion-based transport pathway results in a drastic decrease in the surface particle concentration in a relatively short time, as evident in AFM and SIMS characterization of copper foils. Graphene grown on those substrates displays enhanced grain sizes and room-temperature, large-area carrier mobilities in excess of 5000\u2009cm2/Vs which emphasizes the suitability of our approach for future graphene applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-36390-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "copper foil", 
      "surface impurities", 
      "grain boundary density", 
      "copper purity", 
      "surface particle concentration", 
      "catalyst thickness", 
      "boundary density", 
      "SIMS characterization", 
      "carrier mobility", 
      "grain size", 
      "graphene applications", 
      "CVD graphene", 
      "particle concentration", 
      "substrates display", 
      "impurity diffusion", 
      "high efficiency", 
      "quality of CVD", 
      "graphene", 
      "impurities", 
      "foil", 
      "solid cap", 
      "surface", 
      "new method", 
      "bulk", 
      "AFM", 
      "thickness", 
      "nucleation", 
      "short time", 
      "cleaning", 
      "drastic decrease", 
      "grains", 
      "diffusion", 
      "method", 
      "efficiency", 
      "transport pathways", 
      "density", 
      "CVD", 
      "sink", 
      "applications", 
      "purity", 
      "enhancement", 
      "suitability", 
      "characterization", 
      "size", 
      "quality", 
      "mobility", 
      "cap", 
      "approach", 
      "time", 
      "concentration", 
      "display", 
      "decrease", 
      "growth", 
      "excess", 
      "pathway", 
      "parallel nucleation", 
      "large-area carrier mobilities", 
      "future graphene applications", 
      "facilitated cleaning"
    ], 
    "name": "Solid-diffusion-facilitated cleaning of copper foil improves the quality of CVD graphene", 
    "pagination": "257", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111606496"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36390-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30670729"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36390-4", 
      "https://app.dimensions.ai/details/publication/pub.1111606496"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_820.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-36390-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36390-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36390-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36390-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36390-4'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      22 PREDICATES      90 URIs      77 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36390-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3b4c2e0a5dc94c9f9914558467afcc64
4 schema:citation sg:pub.10.1007/s12274-012-0227-0
5 sg:pub.10.1038/nature09405
6 sg:pub.10.1038/ncomms3096
7 sg:pub.10.1038/srep00337
8 sg:pub.10.1134/s0031918x17100064
9 schema:datePublished 2019-01-22
10 schema:datePublishedReg 2019-01-22
11 schema:description The quality of CVD-grown graphene is limited by the parallel nucleation of grains from surface impurities which leads to increased grain boundary densities. Currently employed cleaning methods cannot completely remove surface impurities since impurity diffusion from the bulk to the surface occurs during growth. We here introduce a new method to remove impurities not only on the surface but also from the bulk. By employing a solid cap during annealing that acts as a sink for impurities and leads to an enhancement of copper purity throughout the catalyst thickness. The high efficiency of the solid-diffusion-based transport pathway results in a drastic decrease in the surface particle concentration in a relatively short time, as evident in AFM and SIMS characterization of copper foils. Graphene grown on those substrates displays enhanced grain sizes and room-temperature, large-area carrier mobilities in excess of 5000 cm<sup>2</sup>/Vs which emphasizes the suitability of our approach for future graphene applications.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N3a05d99321274f829e9d4af86f367008
16 Nba35e58e5d9b4ea196353f440a9fbe9d
17 sg:journal.1045337
18 schema:keywords AFM
19 CVD
20 CVD graphene
21 SIMS characterization
22 applications
23 approach
24 boundary density
25 bulk
26 cap
27 carrier mobility
28 catalyst thickness
29 characterization
30 cleaning
31 concentration
32 copper foil
33 copper purity
34 decrease
35 density
36 diffusion
37 display
38 drastic decrease
39 efficiency
40 enhancement
41 excess
42 facilitated cleaning
43 foil
44 future graphene applications
45 grain boundary density
46 grain size
47 grains
48 graphene
49 graphene applications
50 growth
51 high efficiency
52 impurities
53 impurity diffusion
54 large-area carrier mobilities
55 method
56 mobility
57 new method
58 nucleation
59 parallel nucleation
60 particle concentration
61 pathway
62 purity
63 quality
64 quality of CVD
65 short time
66 sink
67 size
68 solid cap
69 substrates display
70 suitability
71 surface
72 surface impurities
73 surface particle concentration
74 thickness
75 time
76 transport pathways
77 schema:name Solid-diffusion-facilitated cleaning of copper foil improves the quality of CVD graphene
78 schema:pagination 257
79 schema:productId N649454b103144d11ad0aadea07e5df87
80 Nc524bd646e0240e6aaa1579a9fc72137
81 Ndd592624a68744f690da4e88dfd6a73d
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111606496
83 https://doi.org/10.1038/s41598-018-36390-4
84 schema:sdDatePublished 2021-12-01T19:45
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher Nab0b36d0f0204a7aac10bac113f3e7b1
87 schema:url https://doi.org/10.1038/s41598-018-36390-4
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N059aeccd655044f1900b0d410440fdb0 rdf:first sg:person.011717620154.18
92 rdf:rest N373203f7d7fa4e9c93c65f31bb5b2f4a
93 N0e0834aede254d31a2ac52e3cb497cfe rdf:first sg:person.01006744237.62
94 rdf:rest rdf:nil
95 N373203f7d7fa4e9c93c65f31bb5b2f4a rdf:first sg:person.0740631037.18
96 rdf:rest N0e0834aede254d31a2ac52e3cb497cfe
97 N3a05d99321274f829e9d4af86f367008 schema:volumeNumber 9
98 rdf:type schema:PublicationVolume
99 N3b4c2e0a5dc94c9f9914558467afcc64 rdf:first sg:person.016133433441.39
100 rdf:rest N7972d2b3ab204aedb085836c3a84c79a
101 N649454b103144d11ad0aadea07e5df87 schema:name dimensions_id
102 schema:value pub.1111606496
103 rdf:type schema:PropertyValue
104 N7972d2b3ab204aedb085836c3a84c79a rdf:first sg:person.01360627401.18
105 rdf:rest N059aeccd655044f1900b0d410440fdb0
106 Nab0b36d0f0204a7aac10bac113f3e7b1 schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nba35e58e5d9b4ea196353f440a9fbe9d schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 Nc524bd646e0240e6aaa1579a9fc72137 schema:name doi
111 schema:value 10.1038/s41598-018-36390-4
112 rdf:type schema:PropertyValue
113 Ndd592624a68744f690da4e88dfd6a73d schema:name pubmed_id
114 schema:value 30670729
115 rdf:type schema:PropertyValue
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
120 schema:name Materials Engineering
121 rdf:type schema:DefinedTerm
122 sg:journal.1045337 schema:issn 2045-2322
123 schema:name Scientific Reports
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.01006744237.62 schema:affiliation grid-institutes:grid.28665.3f
127 schema:familyName Hsieh
128 schema:givenName Ya-Ping
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006744237.62
130 rdf:type schema:Person
131 sg:person.011717620154.18 schema:affiliation grid-institutes:grid.64523.36
132 schema:familyName Su
133 schema:givenName Yen-Hsun
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011717620154.18
135 rdf:type schema:Person
136 sg:person.01360627401.18 schema:affiliation grid-institutes:grid.412047.4
137 schema:familyName Chiang
138 schema:givenName Wan-Yu
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360627401.18
140 rdf:type schema:Person
141 sg:person.016133433441.39 schema:affiliation grid-institutes:grid.64523.36
142 schema:familyName Nguyen
143 schema:givenName Dinh-Tuan
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016133433441.39
145 rdf:type schema:Person
146 sg:person.0740631037.18 schema:affiliation grid-institutes:grid.19188.39
147 schema:familyName Hofmann
148 schema:givenName Mario
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740631037.18
150 rdf:type schema:Person
151 sg:pub.10.1007/s12274-012-0227-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009003760
152 https://doi.org/10.1007/s12274-012-0227-0
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature09405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027275519
155 https://doi.org/10.1038/nature09405
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/ncomms3096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029669947
158 https://doi.org/10.1038/ncomms3096
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/srep00337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043061353
161 https://doi.org/10.1038/srep00337
162 rdf:type schema:CreativeWork
163 sg:pub.10.1134/s0031918x17100064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092914458
164 https://doi.org/10.1134/s0031918x17100064
165 rdf:type schema:CreativeWork
166 grid-institutes:grid.19188.39 schema:alternateName Department of Physics, National Taiwan University, Taipei, 10617 Taiwan
167 schema:name Department of Physics, National Taiwan University, Taipei, 10617 Taiwan
168 rdf:type schema:Organization
169 grid-institutes:grid.28665.3f schema:alternateName Institute for Atomic and Molecular Science, Academia Sinica, Taipei, 10617 Taiwan
170 schema:name Institute for Atomic and Molecular Science, Academia Sinica, Taipei, 10617 Taiwan
171 rdf:type schema:Organization
172 grid-institutes:grid.412047.4 schema:alternateName Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi, 62102 Taiwan
173 schema:name Graduate Institute of Opto-Mechatronics, National Chung Cheng University, Chiayi, 62102 Taiwan
174 rdf:type schema:Organization
175 grid-institutes:grid.64523.36 schema:alternateName Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
176 schema:name Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101 Taiwan
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...