Volume entropy for modeling information flow in a brain graph View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-01-22

AUTHORS

Hyekyoung Lee, Eunkyung Kim, Seunggyun Ha, Hyejin Kang, Youngmin Huh, Youngjo Lee, Seonhee Lim, Dong Soo Lee

ABSTRACT

Brain regions send and receive information through neuronal connections in an efficient way. In this paper, we modelled the information propagation in brain networks by a generalized Markov system associated with a new edge-transition matrix, based on the assumption that information flows through brain networks forever. From this model, we derived new global and local network measures, called a volume entropy and the capacity of nodes and edges on FDG PET and resting-state functional MRI. Volume entropy of a metric graph, a global measure of information, measures the exponential growth rate of the number of network paths. Capacity of nodes and edges, a local measure of information, represents the stationary distribution of information propagation in brain networks. On the resting-state functional MRI of healthy normal subjects, these measures revealed that volume entropy was significantly negatively correlated to the aging and capacities of specific brain nodes and edges underpinned which brain nodes or edges contributed these aging-related changes. More... »

PAGES

256

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36339-7

DOI

http://dx.doi.org/10.1038/s41598-018-36339-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111604032

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30670725


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Entropy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Healthy Volunteers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Markov Chains", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nerve Net", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron-Emission Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea", 
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Hyekyoung", 
        "id": "sg:person.0626601031.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626601031.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea", 
            "Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Eunkyung", 
        "id": "sg:person.01001232700.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001232700.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ha", 
        "givenName": "Seunggyun", 
        "id": "sg:person.01107464404.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BK21 Plus Global Translational Research on Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea", 
            "BK21 Plus Global Translational Research on Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Hyejin", 
        "id": "sg:person.0675240200.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675240200.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea", 
            "Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huh", 
        "givenName": "Youngmin", 
        "id": "sg:person.07354113173.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354113173.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Statistics, College of Natural Sciences, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Data Science for Knowledge Creation Research Center, Seoul National University, Seoul, South Korea", 
            "Department of Statistics, College of Natural Sciences, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Youngjo", 
        "id": "sg:person.01325611022.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325611022.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematical Sciences, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Mathematical Sciences, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Seonhee", 
        "id": "sg:person.010032653225.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032653225.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Brain Research Institute, Daegu, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.452628.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea", 
            "Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, South Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
            "Korea Brain Research Institute, Daegu, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrn3214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001490942", 
          "https://doi.org/10.1038/nrn3214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022145014", 
          "https://doi.org/10.1038/srep02853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01-22", 
    "datePublishedReg": "2019-01-22", 
    "description": "Brain regions send and receive information through neuronal connections in an efficient way. In this paper, we modelled the information propagation in brain networks by a generalized Markov system associated with a new edge-transition matrix, based on the assumption that information flows through brain networks forever. From this model, we derived new global and local network measures, called a volume entropy and the capacity of nodes and edges on FDG PET and resting-state functional MRI. Volume entropy of a metric graph, a global measure of information, measures the exponential growth rate of the number of network paths. Capacity of nodes and edges, a\u00a0local measure of information, represents the stationary distribution of information propagation in brain networks. On the resting-state functional MRI of healthy normal subjects, these measures revealed that volume entropy was significantly negatively correlated to the aging and capacities of specific brain nodes and edges underpinned which brain nodes or edges contributed these aging-related changes.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-36339-7", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "keywords": [
      "functional MRI", 
      "brain networks", 
      "resting-state functional MRI", 
      "resting-state functional MRI", 
      "brain nodes", 
      "healthy normal subjects", 
      "age-related changes", 
      "FDG-PET", 
      "normal subjects", 
      "neuronal connections", 
      "brain regions", 
      "local network measures", 
      "MRI", 
      "global measures", 
      "measures", 
      "subjects", 
      "local measures", 
      "PET", 
      "aging", 
      "brain graphs", 
      "nodes", 
      "network measures", 
      "rate", 
      "capacity", 
      "information", 
      "volume", 
      "changes", 
      "number", 
      "region", 
      "growth rate", 
      "information flow", 
      "model", 
      "exponential growth rate", 
      "flow", 
      "system", 
      "connection", 
      "distribution", 
      "way", 
      "network", 
      "efficient way", 
      "edge", 
      "matrix", 
      "capacity of nodes", 
      "propagation", 
      "assumption", 
      "volume entropy", 
      "information propagation", 
      "Markov systems", 
      "metric graphs", 
      "stationary distribution", 
      "path", 
      "entropy", 
      "paper", 
      "network paths", 
      "graph"
    ], 
    "name": "Volume entropy for modeling information flow in a brain graph", 
    "pagination": "256", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111604032"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36339-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30670725"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36339-7", 
      "https://app.dimensions.ai/details/publication/pub.1111604032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_822.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-36339-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36339-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36339-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36339-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36339-7'


 

This table displays all metadata directly associated to this object as RDF triples.

263 TRIPLES      21 PREDICATES      99 URIs      88 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36339-7 schema:about N0731157279c74edf9aac0f14674d0a04
2 N0a2fcb41b4a64ef4b027251415aab624
3 N0af1f092d3c14f47ab43976522cfc279
4 N1532c73d0886450a8faca0d7a9fa11d8
5 N30fc1f41844f448c9deef0814b9670b5
6 N4c37656f162840768fa4ddb2bbe4cb4b
7 N797284fa30174648be1b9cafd1d31bed
8 N7b7f6707bb1e4eda822d03f5626ead06
9 N84eed39b60fe49f4821be52ca6170e6f
10 N86fe6c3c5a754aa1b477e0dd566310ab
11 N914b877a9a0142c3b2e556220050bf60
12 N9165837172da46aca34b13bd670892d9
13 N987861bf8dfc43ec9c0d9bb810139e1b
14 Naa2fdfc5c3894710bd67c528a3b61f0d
15 Nbad02ac2513c4fa393b6b1f8e762a101
16 Nbbf6175f94444c11971d59d3faf55451
17 Ne975b6cbe4554fa5b4445698676d2e30
18 anzsrc-for:11
19 anzsrc-for:1109
20 schema:author Ne9c3723f3b894efea60ae9c5d5f60e50
21 schema:citation sg:pub.10.1038/30918
22 sg:pub.10.1038/nrn3214
23 sg:pub.10.1038/srep02853
24 schema:datePublished 2019-01-22
25 schema:datePublishedReg 2019-01-22
26 schema:description Brain regions send and receive information through neuronal connections in an efficient way. In this paper, we modelled the information propagation in brain networks by a generalized Markov system associated with a new edge-transition matrix, based on the assumption that information flows through brain networks forever. From this model, we derived new global and local network measures, called a volume entropy and the capacity of nodes and edges on FDG PET and resting-state functional MRI. Volume entropy of a metric graph, a global measure of information, measures the exponential growth rate of the number of network paths. Capacity of nodes and edges, a local measure of information, represents the stationary distribution of information propagation in brain networks. On the resting-state functional MRI of healthy normal subjects, these measures revealed that volume entropy was significantly negatively correlated to the aging and capacities of specific brain nodes and edges underpinned which brain nodes or edges contributed these aging-related changes.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N653fa03d8b9d4bb3aad78b1cd5fe8c3b
30 Nceb9d239be8f4a32acf26e9fed813f3c
31 sg:journal.1045337
32 schema:keywords FDG-PET
33 MRI
34 Markov systems
35 PET
36 age-related changes
37 aging
38 assumption
39 brain graphs
40 brain networks
41 brain nodes
42 brain regions
43 capacity
44 capacity of nodes
45 changes
46 connection
47 distribution
48 edge
49 efficient way
50 entropy
51 exponential growth rate
52 flow
53 functional MRI
54 global measures
55 graph
56 growth rate
57 healthy normal subjects
58 information
59 information flow
60 information propagation
61 local measures
62 local network measures
63 matrix
64 measures
65 metric graphs
66 model
67 network
68 network measures
69 network paths
70 neuronal connections
71 nodes
72 normal subjects
73 number
74 paper
75 path
76 propagation
77 rate
78 region
79 resting-state functional MRI
80 stationary distribution
81 subjects
82 system
83 volume
84 volume entropy
85 way
86 schema:name Volume entropy for modeling information flow in a brain graph
87 schema:pagination 256
88 schema:productId N10c4cbf308794370be8dd54240037ffd
89 N41b2d4918c4a4268a5d92412d88adb64
90 Ndc78d931dadc4ca69e0f1029d7b27f6f
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111604032
92 https://doi.org/10.1038/s41598-018-36339-7
93 schema:sdDatePublished 2022-10-01T06:46
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N12163c0ff0ea4351ae92591e36ffa689
96 schema:url https://doi.org/10.1038/s41598-018-36339-7
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N0731157279c74edf9aac0f14674d0a04 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Magnetic Resonance Imaging
102 rdf:type schema:DefinedTerm
103 N0a2fcb41b4a64ef4b027251415aab624 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Brain Mapping
105 rdf:type schema:DefinedTerm
106 N0af1f092d3c14f47ab43976522cfc279 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Young Adult
108 rdf:type schema:DefinedTerm
109 N0c4b4b801fd345e4b5326c434284d50a rdf:first sg:person.01325611022.50
110 rdf:rest N2c5e15ad25e445c08296b206f6d02a27
111 N10c4cbf308794370be8dd54240037ffd schema:name doi
112 schema:value 10.1038/s41598-018-36339-7
113 rdf:type schema:PropertyValue
114 N12163c0ff0ea4351ae92591e36ffa689 schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N1532c73d0886450a8faca0d7a9fa11d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Aged
118 rdf:type schema:DefinedTerm
119 N1e27ebd5b493479382fa8c04106d2742 rdf:first sg:person.01107464404.68
120 rdf:rest N40017fd60f9a46a08d09e1a5ef1e4428
121 N2c5e15ad25e445c08296b206f6d02a27 rdf:first sg:person.010032653225.46
122 rdf:rest N8ebd74eb46b04cc094d8d93680daa3a4
123 N30fc1f41844f448c9deef0814b9670b5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Female
125 rdf:type schema:DefinedTerm
126 N40017fd60f9a46a08d09e1a5ef1e4428 rdf:first sg:person.0675240200.25
127 rdf:rest N984fdb5c3edb4449bbe1e9496ba61648
128 N41b2d4918c4a4268a5d92412d88adb64 schema:name dimensions_id
129 schema:value pub.1111604032
130 rdf:type schema:PropertyValue
131 N4c37656f162840768fa4ddb2bbe4cb4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Models, Neurological
133 rdf:type schema:DefinedTerm
134 N653fa03d8b9d4bb3aad78b1cd5fe8c3b schema:volumeNumber 9
135 rdf:type schema:PublicationVolume
136 N6728de9c6c7f4e17903eff6f27cc1f58 rdf:first sg:person.01001232700.33
137 rdf:rest N1e27ebd5b493479382fa8c04106d2742
138 N797284fa30174648be1b9cafd1d31bed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Positron-Emission Tomography
140 rdf:type schema:DefinedTerm
141 N7b7f6707bb1e4eda822d03f5626ead06 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Middle Aged
143 rdf:type schema:DefinedTerm
144 N84eed39b60fe49f4821be52ca6170e6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Entropy
146 rdf:type schema:DefinedTerm
147 N86fe6c3c5a754aa1b477e0dd566310ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Humans
149 rdf:type schema:DefinedTerm
150 N8ebd74eb46b04cc094d8d93680daa3a4 rdf:first sg:person.015617314175.88
151 rdf:rest rdf:nil
152 N914b877a9a0142c3b2e556220050bf60 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Markov Chains
154 rdf:type schema:DefinedTerm
155 N9165837172da46aca34b13bd670892d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Male
157 rdf:type schema:DefinedTerm
158 N984fdb5c3edb4449bbe1e9496ba61648 rdf:first sg:person.07354113173.37
159 rdf:rest N0c4b4b801fd345e4b5326c434284d50a
160 N987861bf8dfc43ec9c0d9bb810139e1b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Adult
162 rdf:type schema:DefinedTerm
163 Naa2fdfc5c3894710bd67c528a3b61f0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Nerve Net
165 rdf:type schema:DefinedTerm
166 Nbad02ac2513c4fa393b6b1f8e762a101 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Healthy Volunteers
168 rdf:type schema:DefinedTerm
169 Nbbf6175f94444c11971d59d3faf55451 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Brain
171 rdf:type schema:DefinedTerm
172 Nceb9d239be8f4a32acf26e9fed813f3c schema:issueNumber 1
173 rdf:type schema:PublicationIssue
174 Ndc78d931dadc4ca69e0f1029d7b27f6f schema:name pubmed_id
175 schema:value 30670725
176 rdf:type schema:PropertyValue
177 Ne975b6cbe4554fa5b4445698676d2e30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Aging
179 rdf:type schema:DefinedTerm
180 Ne9c3723f3b894efea60ae9c5d5f60e50 rdf:first sg:person.0626601031.23
181 rdf:rest N6728de9c6c7f4e17903eff6f27cc1f58
182 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
183 schema:name Medical and Health Sciences
184 rdf:type schema:DefinedTerm
185 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
186 schema:name Neurosciences
187 rdf:type schema:DefinedTerm
188 sg:journal.1045337 schema:issn 2045-2322
189 schema:name Scientific Reports
190 schema:publisher Springer Nature
191 rdf:type schema:Periodical
192 sg:person.01001232700.33 schema:affiliation grid-institutes:grid.412484.f
193 schema:familyName Kim
194 schema:givenName Eunkyung
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001232700.33
196 rdf:type schema:Person
197 sg:person.010032653225.46 schema:affiliation grid-institutes:grid.31501.36
198 schema:familyName Lim
199 schema:givenName Seonhee
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010032653225.46
201 rdf:type schema:Person
202 sg:person.01107464404.68 schema:affiliation grid-institutes:grid.31501.36
203 schema:familyName Ha
204 schema:givenName Seunggyun
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107464404.68
206 rdf:type schema:Person
207 sg:person.01325611022.50 schema:affiliation grid-institutes:grid.31501.36
208 schema:familyName Lee
209 schema:givenName Youngjo
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325611022.50
211 rdf:type schema:Person
212 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.452628.f
213 schema:familyName Lee
214 schema:givenName Dong Soo
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
216 rdf:type schema:Person
217 sg:person.0626601031.23 schema:affiliation grid-institutes:grid.31501.36
218 schema:familyName Lee
219 schema:givenName Hyekyoung
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626601031.23
221 rdf:type schema:Person
222 sg:person.0675240200.25 schema:affiliation grid-institutes:grid.31501.36
223 schema:familyName Kang
224 schema:givenName Hyejin
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675240200.25
226 rdf:type schema:Person
227 sg:person.07354113173.37 schema:affiliation grid-institutes:grid.31501.36
228 schema:familyName Huh
229 schema:givenName Youngmin
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07354113173.37
231 rdf:type schema:Person
232 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
233 https://doi.org/10.1038/30918
234 rdf:type schema:CreativeWork
235 sg:pub.10.1038/nrn3214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001490942
236 https://doi.org/10.1038/nrn3214
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/srep02853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022145014
239 https://doi.org/10.1038/srep02853
240 rdf:type schema:CreativeWork
241 grid-institutes:grid.31501.36 schema:alternateName BK21 Plus Global Translational Research on Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
242 Department of Mathematical Sciences, Seoul National University, Seoul, South Korea
243 Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
244 Department of Statistics, College of Natural Sciences, Seoul National University, Seoul, South Korea
245 Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, South Korea
246 schema:name BK21 Plus Global Translational Research on Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
247 Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
248 Data Science for Knowledge Creation Research Center, Seoul National University, Seoul, South Korea
249 Department of Mathematical Sciences, Seoul National University, Seoul, South Korea
250 Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
251 Department of Statistics, College of Natural Sciences, Seoul National University, Seoul, South Korea
252 Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, South Korea
253 rdf:type schema:Organization
254 grid-institutes:grid.412484.f schema:alternateName Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, South Korea
255 schema:name Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
256 Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, South Korea
257 rdf:type schema:Organization
258 grid-institutes:grid.452628.f schema:alternateName Korea Brain Research Institute, Daegu, Republic of Korea
259 schema:name Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
260 Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, South Korea
261 Interdisciplinary Program in Cognitive Science, Seoul National University, Seoul, South Korea
262 Korea Brain Research Institute, Daegu, Republic of Korea
263 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...