A novel approach for assessing neuromodulation using phase-locked information measured with TMS-EEG View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Eri Miyauchi, Masayuki Ide, Hirokazu Tachikawa, Kiyotaka Nemoto, Tetsuaki Arai, Masahiro Kawasaki

ABSTRACT

Neuromodulation therapies such as electroconvulsive therapy (ECT) are used to treat several neuropsychiatric disorders, including major depressive disorder (MDD). Recent work has highlighted the use of combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) to evaluate the therapeutic effects of neuromodulation; particularly, the phase locking factor (PLF) and phase locking value (PLV) can reportedly assess neuromodulation-induced functional changes in cortical networks. To examine changes in TMS-induced PLV and PLF before and after ECT, and their relationship with depression severity in patients with MDD, TMS-EEG and the Montgomery-Åsberg Depression Rating Scale (MADRS; depression severity) were implemented before and after ECT in 10 patients with MDD. Single-pulse TMS was applied to the visual and motor areas to induce phase propagation in the visuo-motor network at rest. Functional changes were assessed using PLF and PLV data. Pre-ECT TMS-induced alpha band (9-12 Hz) PLV was negatively correlated with depression severity, and increments of post-ECT from pre-ECT TMS-induced alpha band PLV were positively correlated with the reduction in depression severity. Moreover, we found a negative correlation between pre-ECT TMS-induced PLF at TMS-destination and depression severity. Finally, differences in post-ECT TMS-induced PLF peak latencies between visual and motor areas were positively correlated with depression severity. TMS-EEG-based PLV and PLF may be used to assess the therapeutic effects of neuromodulation and depressive states, respectively. Furthermore, our results provide new insights about the neural mechanisms of ECT and depression. More... »

PAGES

428

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36317-z

DOI

http://dx.doi.org/10.1038/s41598-018-36317-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111622283

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30674902


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, 305-8573, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyauchi", 
        "givenName": "Eri", 
        "id": "sg:person.0620467672.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620467672.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, 305-8575, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ide", 
        "givenName": "Masayuki", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, 305-8575, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tachikawa", 
        "givenName": "Hirokazu", 
        "id": "sg:person.01342316621.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342316621.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, 305-8575, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nemoto", 
        "givenName": "Kiyotaka", 
        "id": "sg:person.01311174756.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311174756.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, 305-8575, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arai", 
        "givenName": "Tetsuaki", 
        "id": "sg:person.01041044121.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041044121.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tsukuba", 
          "id": "https://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, 305-8573, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kawasaki", 
        "givenName": "Masahiro", 
        "id": "sg:person.0602430443.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602430443.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1001/archneurpsyc.1936.02260020155013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002212348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnsys.2010.00041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004347453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02699930500405600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005143419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2005.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006467381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cortex.2008.10.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006481695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bdi.12249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006597190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brs.2015.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006663552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.psych.53.100901.135148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007122597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2009.01.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007682271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008071763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2009.04.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009937443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2016.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013821449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2016.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013821449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neulet.2016.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013821449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-79061-9_113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013848715", 
          "https://doi.org/10.1007/978-0-387-79061-9_113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jad.2013.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016176018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5402/2011/845453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016199261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clinph.2006.06.712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017647997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/yct.0b013e31825ebcc7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019696954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/yct.0b013e31825ebcc7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019696954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncir.2016.00073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023316367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-012-0256-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025616126", 
          "https://doi.org/10.1007/s10548-012-0256-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/yco.0b013e32832a133f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027436987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/yco.0b013e32832a133f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027436987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/yco.0b013e32832a133f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027436987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3956(75)90026-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027523106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/070674371105600104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028686327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/070674371105600104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028686327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2014.00173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035232816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-009-0123-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036385894", 
          "https://doi.org/10.1007/s10548-009-0123-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-009-0123-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036385894", 
          "https://doi.org/10.1007/s10548-009-0123-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-009-0123-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036385894", 
          "https://doi.org/10.1007/s10548-009-0123-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neubiorev.2008.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042321270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-009-0115-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043095913", 
          "https://doi.org/10.1007/s10548-009-0115-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-009-0115-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043095913", 
          "https://doi.org/10.1007/s10548-009-0115-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-009-0115-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043095913", 
          "https://doi.org/10.1007/s10548-009-0115-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00221-006-0551-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046651272", 
          "https://doi.org/10.1007/s00221-006-0551-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10548-011-0196-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048029758", 
          "https://doi.org/10.1007/s10548-011-0196-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpsyt.2013.00010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049416863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2013.00037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053592843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1192/bjp.134.4.382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064167142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/187152408786848076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069220295"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.2001.86.4.1983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074893730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.16-13-04240.1996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082938461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082983106", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awx030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083930831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.brs.2017.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084062986"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Neuromodulation therapies such as electroconvulsive therapy (ECT) are used to treat several neuropsychiatric disorders, including major depressive disorder (MDD). Recent work has highlighted the use of combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) to evaluate the therapeutic effects of neuromodulation; particularly, the phase locking factor (PLF) and phase locking value (PLV) can reportedly assess neuromodulation-induced functional changes in cortical networks. To examine changes in TMS-induced PLV and PLF before and after ECT, and their relationship with depression severity in patients with MDD, TMS-EEG and the Montgomery-\u00c5sberg Depression Rating Scale (MADRS; depression severity) were implemented before and after ECT in 10 patients with MDD. Single-pulse TMS was applied to the visual and motor areas to induce phase propagation in the visuo-motor network at rest. Functional changes were assessed using PLF and PLV data. Pre-ECT TMS-induced alpha band (9-12\u2009Hz) PLV was negatively correlated with depression severity, and increments of post-ECT from pre-ECT TMS-induced alpha band PLV were positively correlated with the reduction in depression severity. Moreover, we found a negative correlation between pre-ECT TMS-induced PLF at TMS-destination and depression severity. Finally, differences in post-ECT TMS-induced PLF peak latencies between visual and motor areas were positively correlated with depression severity. TMS-EEG-based PLV and PLF may be used to assess the therapeutic effects of neuromodulation and depressive states, respectively. Furthermore, our results provide new insights about the neural mechanisms of ECT and depression.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36317-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5853209", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "A novel approach for assessing neuromodulation using phase-locked information measured with TMS-EEG", 
    "pagination": "428", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6c7d456760329d79907130ab0d9d2077eabd9f1c3f890fb1dfd831bb75bb4c53"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30674902"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36317-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111622283"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36317-z", 
      "https://app.dimensions.ai/details/publication/pub.1111622283"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68439_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36317-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36317-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36317-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36317-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36317-z'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36317-z schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nc555750186074d2bb782865d4e305c1c
4 schema:citation sg:pub.10.1007/978-0-387-79061-9_113
5 sg:pub.10.1007/s00221-006-0551-2
6 sg:pub.10.1007/s10548-009-0115-4
7 sg:pub.10.1007/s10548-009-0123-4
8 sg:pub.10.1007/s10548-011-0196-8
9 sg:pub.10.1007/s10548-012-0256-8
10 https://app.dimensions.ai/details/publication/pub.1082983106
11 https://doi.org/10.1001/archneurpsyc.1936.02260020155013
12 https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c
13 https://doi.org/10.1016/0022-3956(75)90026-6
14 https://doi.org/10.1016/j.brs.2015.07.029
15 https://doi.org/10.1016/j.brs.2017.03.013
16 https://doi.org/10.1016/j.clinph.2006.06.712
17 https://doi.org/10.1016/j.clinph.2009.04.023
18 https://doi.org/10.1016/j.cortex.2008.10.002
19 https://doi.org/10.1016/j.jad.2013.04.029
20 https://doi.org/10.1016/j.neubiorev.2008.09.002
21 https://doi.org/10.1016/j.neulet.2016.04.008
22 https://doi.org/10.1016/j.neuroimage.2005.05.013
23 https://doi.org/10.1016/j.tics.2009.01.004
24 https://doi.org/10.1080/02699930500405600
25 https://doi.org/10.1093/brain/awx030
26 https://doi.org/10.1097/yco.0b013e32832a133f
27 https://doi.org/10.1097/yct.0b013e31825ebcc7
28 https://doi.org/10.1111/bdi.12249
29 https://doi.org/10.1146/annurev.psych.53.100901.135148
30 https://doi.org/10.1152/jn.2001.86.4.1983
31 https://doi.org/10.1177/070674371105600104
32 https://doi.org/10.1192/bjp.134.4.382
33 https://doi.org/10.1523/jneurosci.16-13-04240.1996
34 https://doi.org/10.2174/187152408786848076
35 https://doi.org/10.3389/fncir.2016.00073
36 https://doi.org/10.3389/fnhum.2013.00037
37 https://doi.org/10.3389/fnhum.2014.00173
38 https://doi.org/10.3389/fnsys.2010.00041
39 https://doi.org/10.3389/fpsyt.2013.00010
40 https://doi.org/10.5402/2011/845453
41 schema:datePublished 2019-12
42 schema:datePublishedReg 2019-12-01
43 schema:description Neuromodulation therapies such as electroconvulsive therapy (ECT) are used to treat several neuropsychiatric disorders, including major depressive disorder (MDD). Recent work has highlighted the use of combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) to evaluate the therapeutic effects of neuromodulation; particularly, the phase locking factor (PLF) and phase locking value (PLV) can reportedly assess neuromodulation-induced functional changes in cortical networks. To examine changes in TMS-induced PLV and PLF before and after ECT, and their relationship with depression severity in patients with MDD, TMS-EEG and the Montgomery-Åsberg Depression Rating Scale (MADRS; depression severity) were implemented before and after ECT in 10 patients with MDD. Single-pulse TMS was applied to the visual and motor areas to induce phase propagation in the visuo-motor network at rest. Functional changes were assessed using PLF and PLV data. Pre-ECT TMS-induced alpha band (9-12 Hz) PLV was negatively correlated with depression severity, and increments of post-ECT from pre-ECT TMS-induced alpha band PLV were positively correlated with the reduction in depression severity. Moreover, we found a negative correlation between pre-ECT TMS-induced PLF at TMS-destination and depression severity. Finally, differences in post-ECT TMS-induced PLF peak latencies between visual and motor areas were positively correlated with depression severity. TMS-EEG-based PLV and PLF may be used to assess the therapeutic effects of neuromodulation and depressive states, respectively. Furthermore, our results provide new insights about the neural mechanisms of ECT and depression.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf N3ce54c25f1ff44e1828ff27a0048e8ac
48 N755a98d91902403889d2f49c87c229cf
49 sg:journal.1045337
50 schema:name A novel approach for assessing neuromodulation using phase-locked information measured with TMS-EEG
51 schema:pagination 428
52 schema:productId N0dc4b5613697417db4c49f13d7d30d0c
53 N6fb0741e6ad94bbcb6d4762678124272
54 N9be6c45732dd4e21a2673983ac3e9b5a
55 Nab260e72d1f34bef91ff6239f16222ba
56 Ndb6ce94aba9845eba8a7347036155319
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111622283
58 https://doi.org/10.1038/s41598-018-36317-z
59 schema:sdDatePublished 2019-04-11T08:58
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N3ed1f5b6ac3a46179f5797c221e278a3
62 schema:url https://www.nature.com/articles/s41598-018-36317-z
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N0dc4b5613697417db4c49f13d7d30d0c schema:name doi
67 schema:value 10.1038/s41598-018-36317-z
68 rdf:type schema:PropertyValue
69 N2c3309857a854123b38de706ea9356ca rdf:first N3aaa4cfa287749aca2e06f4c27e3c597
70 rdf:rest Nab46ac43a6114b1186a49949973df574
71 N3aaa4cfa287749aca2e06f4c27e3c597 schema:affiliation https://www.grid.ac/institutes/grid.20515.33
72 schema:familyName Ide
73 schema:givenName Masayuki
74 rdf:type schema:Person
75 N3ce54c25f1ff44e1828ff27a0048e8ac schema:volumeNumber 9
76 rdf:type schema:PublicationVolume
77 N3ed1f5b6ac3a46179f5797c221e278a3 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N6a6620b8e2ae41bca7f83bd5367c7051 rdf:first sg:person.01311174756.22
80 rdf:rest Nff06bc3994204d799a5b1429235ca338
81 N6fb0741e6ad94bbcb6d4762678124272 schema:name pubmed_id
82 schema:value 30674902
83 rdf:type schema:PropertyValue
84 N755a98d91902403889d2f49c87c229cf schema:issueNumber 1
85 rdf:type schema:PublicationIssue
86 N7af25f688b7349ec80ace336db3c51f0 rdf:first sg:person.0602430443.25
87 rdf:rest rdf:nil
88 N9be6c45732dd4e21a2673983ac3e9b5a schema:name readcube_id
89 schema:value 6c7d456760329d79907130ab0d9d2077eabd9f1c3f890fb1dfd831bb75bb4c53
90 rdf:type schema:PropertyValue
91 Nab260e72d1f34bef91ff6239f16222ba schema:name dimensions_id
92 schema:value pub.1111622283
93 rdf:type schema:PropertyValue
94 Nab46ac43a6114b1186a49949973df574 rdf:first sg:person.01342316621.83
95 rdf:rest N6a6620b8e2ae41bca7f83bd5367c7051
96 Nc555750186074d2bb782865d4e305c1c rdf:first sg:person.0620467672.67
97 rdf:rest N2c3309857a854123b38de706ea9356ca
98 Ndb6ce94aba9845eba8a7347036155319 schema:name nlm_unique_id
99 schema:value 101563288
100 rdf:type schema:PropertyValue
101 Nff06bc3994204d799a5b1429235ca338 rdf:first sg:person.01041044121.24
102 rdf:rest N7af25f688b7349ec80ace336db3c51f0
103 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
104 schema:name Medical and Health Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
107 schema:name Clinical Sciences
108 rdf:type schema:DefinedTerm
109 sg:grant.5853209 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-36317-z
110 rdf:type schema:MonetaryGrant
111 sg:journal.1045337 schema:issn 2045-2322
112 schema:name Scientific Reports
113 rdf:type schema:Periodical
114 sg:person.01041044121.24 schema:affiliation https://www.grid.ac/institutes/grid.20515.33
115 schema:familyName Arai
116 schema:givenName Tetsuaki
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041044121.24
118 rdf:type schema:Person
119 sg:person.01311174756.22 schema:affiliation https://www.grid.ac/institutes/grid.20515.33
120 schema:familyName Nemoto
121 schema:givenName Kiyotaka
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311174756.22
123 rdf:type schema:Person
124 sg:person.01342316621.83 schema:affiliation https://www.grid.ac/institutes/grid.20515.33
125 schema:familyName Tachikawa
126 schema:givenName Hirokazu
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342316621.83
128 rdf:type schema:Person
129 sg:person.0602430443.25 schema:affiliation https://www.grid.ac/institutes/grid.20515.33
130 schema:familyName Kawasaki
131 schema:givenName Masahiro
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602430443.25
133 rdf:type schema:Person
134 sg:person.0620467672.67 schema:affiliation https://www.grid.ac/institutes/grid.20515.33
135 schema:familyName Miyauchi
136 schema:givenName Eri
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0620467672.67
138 rdf:type schema:Person
139 sg:pub.10.1007/978-0-387-79061-9_113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013848715
140 https://doi.org/10.1007/978-0-387-79061-9_113
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00221-006-0551-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046651272
143 https://doi.org/10.1007/s00221-006-0551-2
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10548-009-0115-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043095913
146 https://doi.org/10.1007/s10548-009-0115-4
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10548-009-0123-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036385894
149 https://doi.org/10.1007/s10548-009-0123-4
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10548-011-0196-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048029758
152 https://doi.org/10.1007/s10548-011-0196-8
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10548-012-0256-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025616126
155 https://doi.org/10.1007/s10548-012-0256-8
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1082983106 schema:CreativeWork
158 https://doi.org/10.1001/archneurpsyc.1936.02260020155013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002212348
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/(sici)1097-0193(1999)8:4<194::aid-hbm4>3.0.co;2-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1008071763
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/0022-3956(75)90026-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027523106
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.brs.2015.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006663552
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.brs.2017.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084062986
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.clinph.2006.06.712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017647997
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.clinph.2009.04.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009937443
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.cortex.2008.10.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006481695
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.jad.2013.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016176018
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.neubiorev.2008.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042321270
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.neulet.2016.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013821449
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.neuroimage.2005.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006467381
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.tics.2009.01.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007682271
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/02699930500405600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005143419
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/brain/awx030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083930831
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1097/yco.0b013e32832a133f schema:sameAs https://app.dimensions.ai/details/publication/pub.1027436987
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1097/yct.0b013e31825ebcc7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019696954
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/bdi.12249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006597190
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1146/annurev.psych.53.100901.135148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007122597
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1152/jn.2001.86.4.1983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074893730
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1177/070674371105600104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028686327
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1192/bjp.134.4.382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064167142
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1523/jneurosci.16-13-04240.1996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082938461
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2174/187152408786848076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069220295
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3389/fncir.2016.00073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316367
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3389/fnhum.2013.00037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053592843
209 rdf:type schema:CreativeWork
210 https://doi.org/10.3389/fnhum.2014.00173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035232816
211 rdf:type schema:CreativeWork
212 https://doi.org/10.3389/fnsys.2010.00041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004347453
213 rdf:type schema:CreativeWork
214 https://doi.org/10.3389/fpsyt.2013.00010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049416863
215 rdf:type schema:CreativeWork
216 https://doi.org/10.5402/2011/845453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016199261
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.20515.33 schema:alternateName University of Tsukuba
219 schema:name Department of Intelligent Interaction Technology, Graduate School of Systems and Information Engineering, University of Tsukuba, 1-1-1, Tennodai, 305-8573, Tsukuba, Ibaraki, Japan
220 Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, 305-8575, Tsukuba, Ibaraki, Japan
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...