Solute trapping in Al-Cu alloys caused by a 29 Tesla super high static magnetic field View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Tianxiang Zheng, Bangfei Zhou, Yunbo Zhong, Jiang Wang, Sansan Shuai, Zhongming Ren, Francois Debray, Eric Beaugnon

ABSTRACT

Solidification of Al-Cu alloys has been investigated using a 29 Tesla super high static magnetic field (SHSMF). The results show that, by imposing a 29 Tesla SHSMF, the size of primary phases and spacing of eutectic structure have been refined through the increase of undercooling which results from the suppression of diffusion coefficient. The diffusion coefficient of atoms in the liquid matrix decreases to be about 1.2 × 10-12 m2/s. The lattice constants are reduced and high dislocation density forms in the primary phase, which induces a solute trapping effects. The spacing of (110) plane in Al2Cu is corrected to be 4.3123 Å and 4.2628 Å for Al-40 wt.%Cu alloys treated without and with a SHSMF. The spacing of (111) plane in Al is corrected to be 2.3351 Å and 2.3258 Å for Al-26 wt.%Cu alloys treated without and with a SHSMF. The compression yield strength has been improved by about 42% from 268 MPa to 462 MPa for Al-26 wt.%Cu and 42.5% from 248 MPa to 431 MPa for Al-40 wt.%Cu. The maximum elastic strain increases from about 2% to 4.3% for Al-26 wt.%Cu and from 2% to 4% for Al-40 wt.%Cu. It is expected that SHSMF is beneficial to process materials with high mechanical properties. More... »

PAGES

266

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-36303-5

DOI

http://dx.doi.org/10.1038/s41598-018-36303-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111602201

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30670718


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "State Key Laboratory of Advanced Special Steels, Shanghai University, Yanchang Road No. 149, 200072, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Tianxiang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "State Key Laboratory of Advanced Special Steels, Shanghai University, Yanchang Road No. 149, 200072, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Bangfei", 
        "id": "sg:person.011434723573.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434723573.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "State Key Laboratory of Advanced Special Steels, Shanghai University, Yanchang Road No. 149, 200072, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhong", 
        "givenName": "Yunbo", 
        "id": "sg:person.014437525303.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014437525303.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "State Key Laboratory of Advanced Special Steels, Shanghai University, Yanchang Road No. 149, 200072, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jiang", 
        "id": "sg:person.07554661433.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07554661433.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "State Key Laboratory of Advanced Special Steels, Shanghai University, Yanchang Road No. 149, 200072, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shuai", 
        "givenName": "Sansan", 
        "id": "sg:person.015421756057.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421756057.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "State Key Laboratory of Advanced Special Steels, Shanghai University, Yanchang Road No. 149, 200072, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Zhongming", 
        "id": "sg:person.012442112503.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442112503.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "LNCMI, CNRS/UJF/INSA/UPS, 38042, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Debray", 
        "givenName": "Francois", 
        "id": "sg:person.015400265525.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015400265525.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "LNCMI, CNRS/UJF/INSA/UPS, 38042, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beaugnon", 
        "givenName": "Eric", 
        "id": "sg:person.013521673275.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521673275.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.12.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000205913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2006.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000370963"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-008-9659-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001291688", 
          "https://doi.org/10.1007/s11661-008-9659-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-015-3277-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001396614", 
          "https://doi.org/10.1007/s11661-015-3277-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s1600576715021731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002136604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2015.03.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005495652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500839.2015.1006288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006307470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2008.12.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007589584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2008.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010027013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2013.06.116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011828345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2014.10.095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020246428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2006.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023660891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023715818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00106-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023715818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2012.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026134603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24585", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030310194", 
          "https://doi.org/10.1038/srep24585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01133759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031752438", 
          "https://doi.org/10.1007/bf01133759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01133759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031752438", 
          "https://doi.org/10.1007/bf01133759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2008.06.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032644378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2011.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037569577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/p70-101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044656516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans1960.26.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050415544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.10.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052003177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.43.942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052195319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/327609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052508862", 
          "https://doi.org/10.1038/327609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep03605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053243009", 
          "https://doi.org/10.1038/srep03605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.2779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1086989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062448347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.266.5187.1015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062549136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2017.03.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084097145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.04.085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084738257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-37062-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109709477", 
          "https://doi.org/10.1007/978-3-540-37062-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-37062-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109709477", 
          "https://doi.org/10.1007/978-3-540-37062-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-37062-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109709477", 
          "https://doi.org/10.1007/978-3-540-37062-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Solidification of Al-Cu alloys has been investigated using a 29 Tesla super high static magnetic field (SHSMF). The results show that, by imposing a 29 Tesla SHSMF, the size of primary phases and spacing of eutectic structure have been refined through the increase of undercooling which results from the suppression of diffusion coefficient. The diffusion coefficient of atoms in the liquid matrix decreases to be about 1.2\u2009\u00d7\u200910-12\u2009m2/s. The lattice constants are reduced and high dislocation density forms in the primary phase, which induces a solute trapping effects. The spacing of (110) plane in Al2Cu is corrected to be 4.3123\u2009\u00c5 and 4.2628\u2009\u00c5 for Al-40\u2009wt.%Cu alloys treated without and with a SHSMF. The spacing of (111) plane in Al is corrected to be 2.3351\u2009\u00c5 and 2.3258\u2009\u00c5 for Al-26\u2009wt.%Cu alloys treated without and with a SHSMF. The compression yield strength has been improved by about 42% from 268\u2009MPa to 462\u2009MPa for Al-26\u2009wt.%Cu and 42.5% from 248\u2009MPa to 431\u2009MPa for Al-40\u2009wt.%Cu. The maximum elastic strain increases from about 2% to 4.3% for Al-26\u2009wt.%Cu and from 2% to 4% for Al-40\u2009wt.%Cu. It is expected that SHSMF is beneficial to process materials with high mechanical properties.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-36303-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Solute trapping in Al-Cu alloys caused by a 29 Tesla super high static magnetic field", 
    "pagination": "266", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3d45fa0c584a545c19aac5e42afb1509a7aff52accced83e1ac91f21bea218d4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30670718"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-36303-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111602201"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-36303-5", 
      "https://app.dimensions.ai/details/publication/pub.1111602201"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000325_0000000325/records_100812_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-36303-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36303-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36303-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36303-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-36303-5'


 

This table displays all metadata directly associated to this object as RDF triples.

216 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-36303-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5433ab28d4e049e2a42757abdddbb895
4 schema:citation sg:pub.10.1007/978-3-540-37062-8
5 sg:pub.10.1007/bf01133759
6 sg:pub.10.1007/s11661-008-9659-2
7 sg:pub.10.1007/s11661-015-3277-6
8 sg:pub.10.1038/327609a0
9 sg:pub.10.1038/srep03605
10 sg:pub.10.1038/srep24585
11 https://doi.org/10.1016/j.actamat.2006.10.007
12 https://doi.org/10.1016/j.actamat.2008.12.005
13 https://doi.org/10.1016/j.actamat.2009.10.048
14 https://doi.org/10.1016/j.actamat.2009.12.029
15 https://doi.org/10.1016/j.actamat.2011.04.040
16 https://doi.org/10.1016/j.actamat.2012.11.034
17 https://doi.org/10.1016/j.jallcom.2006.09.032
18 https://doi.org/10.1016/j.jallcom.2014.10.095
19 https://doi.org/10.1016/j.jallcom.2017.04.085
20 https://doi.org/10.1016/j.matdes.2008.06.061
21 https://doi.org/10.1016/j.matlet.2013.06.116
22 https://doi.org/10.1016/j.matlet.2015.03.026
23 https://doi.org/10.1016/j.msea.2017.03.052
24 https://doi.org/10.1016/j.scriptamat.2008.04.028
25 https://doi.org/10.1016/s1359-6454(03)00106-x
26 https://doi.org/10.1080/09500839.2015.1006288
27 https://doi.org/10.1103/physrevlett.78.2779
28 https://doi.org/10.1107/s1600576715021731
29 https://doi.org/10.1126/science.1086989
30 https://doi.org/10.1126/science.266.5187.1015
31 https://doi.org/10.1139/p70-101
32 https://doi.org/10.2320/matertrans1960.26.1
33 https://doi.org/10.2355/isijinternational.43.942
34 schema:datePublished 2019-12
35 schema:datePublishedReg 2019-12-01
36 schema:description Solidification of Al-Cu alloys has been investigated using a 29 Tesla super high static magnetic field (SHSMF). The results show that, by imposing a 29 Tesla SHSMF, the size of primary phases and spacing of eutectic structure have been refined through the increase of undercooling which results from the suppression of diffusion coefficient. The diffusion coefficient of atoms in the liquid matrix decreases to be about 1.2 × 10<sup>-12</sup> m<sup>2</sup>/s. The lattice constants are reduced and high dislocation density forms in the primary phase, which induces a solute trapping effects. The spacing of (110) plane in Al<sub>2</sub>Cu is corrected to be 4.3123 Å and 4.2628 Å for Al-40 wt.%Cu alloys treated without and with a SHSMF. The spacing of (111) plane in Al is corrected to be 2.3351 Å and 2.3258 Å for Al-26 wt.%Cu alloys treated without and with a SHSMF. The compression yield strength has been improved by about 42% from 268 MPa to 462 MPa for Al-26 wt.%Cu and 42.5% from 248 MPa to 431 MPa for Al-40 wt.%Cu. The maximum elastic strain increases from about 2% to 4.3% for Al-26 wt.%Cu and from 2% to 4% for Al-40 wt.%Cu. It is expected that SHSMF is beneficial to process materials with high mechanical properties.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N59dfb26b19424a58abc969ed2447834b
41 Nba5f6c5adcf24393aafc995fb29a62a0
42 sg:journal.1045337
43 schema:name Solute trapping in Al-Cu alloys caused by a 29 Tesla super high static magnetic field
44 schema:pagination 266
45 schema:productId N13b4da79328d418798cb5caad6da0816
46 N47c70c90ed2d434fa8495b60199f81a4
47 N4835e7c6fdf243ca9edf78adc0736025
48 Nc6181a9bd84a4c509c4ffe86c70ea5cf
49 Nc80025f927564d9588a9b671b796b929
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111602201
51 https://doi.org/10.1038/s41598-018-36303-5
52 schema:sdDatePublished 2019-04-11T08:57
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nb8c0b258a53040b387868c516754b982
55 schema:url https://www.nature.com/articles/s41598-018-36303-5
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N11bf541529b3456dbff41bb45de265e2 rdf:first sg:person.011434723573.25
60 rdf:rest Nace01ad15e5f497989eaff7d7657916c
61 N13b4da79328d418798cb5caad6da0816 schema:name readcube_id
62 schema:value 3d45fa0c584a545c19aac5e42afb1509a7aff52accced83e1ac91f21bea218d4
63 rdf:type schema:PropertyValue
64 N1b13e56d41eb40ca8b06ecd4cbd32c50 rdf:first sg:person.07554661433.09
65 rdf:rest N5aa3005d7f9249e79ae8a068e75ce2ed
66 N47c70c90ed2d434fa8495b60199f81a4 schema:name nlm_unique_id
67 schema:value 101563288
68 rdf:type schema:PropertyValue
69 N4835e7c6fdf243ca9edf78adc0736025 schema:name dimensions_id
70 schema:value pub.1111602201
71 rdf:type schema:PropertyValue
72 N5433ab28d4e049e2a42757abdddbb895 rdf:first Neb1153cb814a4441830ac5679ac87606
73 rdf:rest N11bf541529b3456dbff41bb45de265e2
74 N59dfb26b19424a58abc969ed2447834b schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 N5aa3005d7f9249e79ae8a068e75ce2ed rdf:first sg:person.015421756057.81
77 rdf:rest Nbcdfeb13171547ab980303e274c6081d
78 N6d5cb790cd8f4384880c763f2a87c7ca rdf:first sg:person.013521673275.30
79 rdf:rest rdf:nil
80 N9689b325999a4861877bf7be2e3985cf rdf:first sg:person.015400265525.83
81 rdf:rest N6d5cb790cd8f4384880c763f2a87c7ca
82 Nace01ad15e5f497989eaff7d7657916c rdf:first sg:person.014437525303.02
83 rdf:rest N1b13e56d41eb40ca8b06ecd4cbd32c50
84 Nb8c0b258a53040b387868c516754b982 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nba5f6c5adcf24393aafc995fb29a62a0 schema:volumeNumber 9
87 rdf:type schema:PublicationVolume
88 Nbcdfeb13171547ab980303e274c6081d rdf:first sg:person.012442112503.28
89 rdf:rest N9689b325999a4861877bf7be2e3985cf
90 Nc6181a9bd84a4c509c4ffe86c70ea5cf schema:name pubmed_id
91 schema:value 30670718
92 rdf:type schema:PropertyValue
93 Nc80025f927564d9588a9b671b796b929 schema:name doi
94 schema:value 10.1038/s41598-018-36303-5
95 rdf:type schema:PropertyValue
96 Neb1153cb814a4441830ac5679ac87606 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
97 schema:familyName Zheng
98 schema:givenName Tianxiang
99 rdf:type schema:Person
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
104 schema:name Materials Engineering
105 rdf:type schema:DefinedTerm
106 sg:journal.1045337 schema:issn 2045-2322
107 schema:name Scientific Reports
108 rdf:type schema:Periodical
109 sg:person.011434723573.25 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
110 schema:familyName Zhou
111 schema:givenName Bangfei
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011434723573.25
113 rdf:type schema:Person
114 sg:person.012442112503.28 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
115 schema:familyName Ren
116 schema:givenName Zhongming
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012442112503.28
118 rdf:type schema:Person
119 sg:person.013521673275.30 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
120 schema:familyName Beaugnon
121 schema:givenName Eric
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013521673275.30
123 rdf:type schema:Person
124 sg:person.014437525303.02 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
125 schema:familyName Zhong
126 schema:givenName Yunbo
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014437525303.02
128 rdf:type schema:Person
129 sg:person.015400265525.83 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
130 schema:familyName Debray
131 schema:givenName Francois
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015400265525.83
133 rdf:type schema:Person
134 sg:person.015421756057.81 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
135 schema:familyName Shuai
136 schema:givenName Sansan
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015421756057.81
138 rdf:type schema:Person
139 sg:person.07554661433.09 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
140 schema:familyName Wang
141 schema:givenName Jiang
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07554661433.09
143 rdf:type schema:Person
144 sg:pub.10.1007/978-3-540-37062-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109709477
145 https://doi.org/10.1007/978-3-540-37062-8
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/bf01133759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031752438
148 https://doi.org/10.1007/bf01133759
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s11661-008-9659-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001291688
151 https://doi.org/10.1007/s11661-008-9659-2
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s11661-015-3277-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001396614
154 https://doi.org/10.1007/s11661-015-3277-6
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/327609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052508862
157 https://doi.org/10.1038/327609a0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/srep03605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053243009
160 https://doi.org/10.1038/srep03605
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/srep24585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030310194
163 https://doi.org/10.1038/srep24585
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.actamat.2006.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000370963
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.actamat.2008.12.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007589584
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.actamat.2009.10.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052003177
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.actamat.2009.12.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000205913
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.actamat.2011.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037569577
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.actamat.2012.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026134603
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.jallcom.2006.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023660891
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jallcom.2014.10.095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020246428
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jallcom.2017.04.085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084738257
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.matdes.2008.06.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032644378
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/j.matlet.2013.06.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011828345
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.matlet.2015.03.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005495652
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.msea.2017.03.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084097145
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.scriptamat.2008.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010027013
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s1359-6454(03)00106-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1023715818
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1080/09500839.2015.1006288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006307470
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.78.2779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815037
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1107/s1600576715021731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002136604
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.1086989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448347
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.266.5187.1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062549136
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1139/p70-101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044656516
206 rdf:type schema:CreativeWork
207 https://doi.org/10.2320/matertrans1960.26.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050415544
208 rdf:type schema:CreativeWork
209 https://doi.org/10.2355/isijinternational.43.942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052195319
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
212 schema:name State Key Laboratory of Advanced Special Steels, Shanghai University, Yanchang Road No. 149, 200072, Shanghai, China
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.462694.b schema:alternateName French National High Magnetic Field Laboratory
215 schema:name LNCMI, CNRS/UJF/INSA/UPS, 38042, Grenoble, France
216 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...