Multiscale core-periphery structure in a global liner shipping network View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-12

AUTHORS

Sadamori Kojaku, Mengqiao Xu, Haoxiang Xia, Naoki Masuda

ABSTRACT

Maritime transport accounts for a majority of trades in volume, of which 70% in value is carried by container ships that transit regular routes on fixed schedules in the ocean. In the present paper, we analyse a data set of global liner shipping as a network of ports. In particular, we construct the network of the ports as the one-mode projection of a bipartite network composed of ports and ship routes. Like other transportation networks, global liner shipping networks may have core-periphery structure, where a core and a periphery are groups of densely and sparsely interconnected nodes, respectively. Core-periphery structure may have practical implications for understanding the robustness, efficiency and uneven development of international transportation systems. We develop an algorithm to detect core-periphery pairs in a network, which allows one to find core and peripheral nodes on different scales and uses a configuration model that accounts for the fact that the network is obtained by the one-mode projection of a bipartite network. We also found that most ports are core (as opposed to peripheral) ports and that ports in some countries in Europe, America and Asia belong to a global core-periphery pair across different scales, whereas ports in other countries do not. More... »

PAGES

404

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-35922-2

DOI

http://dx.doi.org/10.1038/s41598-018-35922-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111615679

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30674915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bristol", 
          "id": "https://www.grid.ac/institutes/grid.5337.2", 
          "name": [
            "CREST, JST, Kawaguchi Center Building, 4-1-8, Honcho, 332-0012, Kawaguchi-shi, Saitama, Japan", 
            "Department of Engineering Mathematics, Merchant Venturers Building, University of Bristol, Woodland Road, BS8 1UB, Clifton, Bristol, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kojaku", 
        "givenName": "Sadamori", 
        "id": "sg:person.014361532074.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361532074.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "Faculty of Management and Economics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, 116024, Dalian City, Liaoning Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Mengqiao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "Faculty of Management and Economics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, 116024, Dalian City, Liaoning Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xia", 
        "givenName": "Haoxiang", 
        "id": "sg:person.013432461055.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013432461055.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dalian University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.30055.33", 
          "name": [
            "Department of Engineering Mathematics, Merchant Venturers Building, University of Bristol, Woodland Road, BS8 1UB, Clifton, Bristol, United Kingdom", 
            "Faculty of Management and Economics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, 116024, Dalian City, Liaoning Province, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Masuda", 
        "givenName": "Naoki", 
        "id": "sg:person.0726214321.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726214321.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.socnet.2005.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001932315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.baae.2011.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005132732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comnet/cnt016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005337220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep39467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008444547", 
          "https://doi.org/10.1038/srep39467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008670010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.036102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008670010"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1471-0374.2011.00355.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010856544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018047307", 
          "https://doi.org/10.1038/nphys209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018047307", 
          "https://doi.org/10.1038/nphys209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/08/p08007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019336026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2010.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022949845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.socnet.2009.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025142314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605965104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028061681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tre.2011.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029553100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-8733(99)00019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029659870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.298.5594.824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.016110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036285600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.74.016110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036285600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2008/10/p10008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037912856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.118703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038267431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.118703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038267431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21551-3_19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039017481", 
          "https://doi.org/10.1007/978-3-642-21551-3_19"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.046115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039419897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.046115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039419897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0143133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039769965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040951087", 
          "https://doi.org/10.1038/srep33441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044160641", 
          "https://doi.org/10.1038/ncomms10441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.046111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045404370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.046111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045404370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045479836", 
          "https://doi.org/10.1038/nature10011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177704472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046915289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1057/palgrave.mel.9100196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046960292", 
          "https://doi.org/10.1057/palgrave.mel.9100196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2009.0495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047026107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.032810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047798174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.89.032810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047798174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfi.2014.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048979477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053432818", 
          "https://doi.org/10.1038/srep01467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701361104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053516074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s095679251600022x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053945859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1993.10476303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058304387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1353/sof.2006.0098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065050035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2946642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070143931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/aa6b38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085538201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972887.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088800821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/17m1130046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091111872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.052313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092905615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.96.052313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092905615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780199206650.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098762313"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/aab547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103361362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-25560-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103798227", 
          "https://doi.org/10.1038/s41598-018-25560-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/16m1087175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103799847"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-12", 
    "datePublishedReg": "2019-12-01", 
    "description": "Maritime transport accounts for a majority of trades in volume, of which 70% in value is carried by container ships that transit regular routes on fixed schedules in the ocean. In the present paper, we analyse a data set of global liner shipping as a network of ports. In particular, we construct the network of the ports as the one-mode projection of a bipartite network composed of ports and ship routes. Like other transportation networks, global liner shipping networks may have core-periphery structure, where a core and a periphery are groups of densely and sparsely interconnected nodes, respectively. Core-periphery structure may have practical implications for understanding the robustness, efficiency and uneven development of international transportation systems. We develop an algorithm to detect core-periphery pairs in a network, which allows one to find core and peripheral nodes on different scales and uses a configuration model that accounts for the fact that the network is obtained by the one-mode projection of a bipartite network. We also found that most ports are core (as opposed to peripheral) ports and that ports in some countries in Europe, America and Asia belong to a global core-periphery pair across different scales, whereas ports in other countries do not.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-35922-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "9"
      }
    ], 
    "name": "Multiscale core-periphery structure in a global liner shipping network", 
    "pagination": "404", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "228b3b6ddc7b4152a932ac9293a5d9839a22c4b4a8415af4146c56eab9a5a8f3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30674915"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-35922-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111615679"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-35922-2", 
      "https://app.dimensions.ai/details/publication/pub.1111615679"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000326_0000000326/records_68472_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-35922-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-35922-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-35922-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-35922-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-35922-2'


 

This table displays all metadata directly associated to this object as RDF triples.

241 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-35922-2 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author Nfb3cc0a276c0402cb82ffd5ac36f9d00
4 schema:citation sg:pub.10.1007/978-3-642-21551-3_19
5 sg:pub.10.1038/nature03288
6 sg:pub.10.1038/nature10011
7 sg:pub.10.1038/ncomms10441
8 sg:pub.10.1038/nphys209
9 sg:pub.10.1038/s41598-018-25560-z
10 sg:pub.10.1038/srep01467
11 sg:pub.10.1038/srep33441
12 sg:pub.10.1038/srep39467
13 sg:pub.10.1057/palgrave.mel.9100196
14 https://doi.org/10.1016/j.baae.2011.09.004
15 https://doi.org/10.1016/j.jfi.2014.02.003
16 https://doi.org/10.1016/j.physrep.2010.11.002
17 https://doi.org/10.1016/j.socnet.2005.06.003
18 https://doi.org/10.1016/j.socnet.2009.09.003
19 https://doi.org/10.1016/j.tre.2011.08.005
20 https://doi.org/10.1016/s0378-8733(99)00019-2
21 https://doi.org/10.1017/s095679251600022x
22 https://doi.org/10.1073/pnas.0605965104
23 https://doi.org/10.1073/pnas.0701361104
24 https://doi.org/10.1080/01621459.1993.10476303
25 https://doi.org/10.1088/1367-2630/aa6b38
26 https://doi.org/10.1088/1367-2630/aab547
27 https://doi.org/10.1088/1742-5468/2008/08/p08007
28 https://doi.org/10.1088/1742-5468/2008/10/p10008
29 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
30 https://doi.org/10.1093/comnet/cnt016
31 https://doi.org/10.1098/rsif.2009.0495
32 https://doi.org/10.1103/physreve.69.026113
33 https://doi.org/10.1103/physreve.72.046111
34 https://doi.org/10.1103/physreve.74.016110
35 https://doi.org/10.1103/physreve.76.036102
36 https://doi.org/10.1103/physreve.76.046115
37 https://doi.org/10.1103/physreve.89.032810
38 https://doi.org/10.1103/physreve.96.052313
39 https://doi.org/10.1103/physrevlett.109.118703
40 https://doi.org/10.1109/tpami.2005.237
41 https://doi.org/10.1111/j.1471-0374.2011.00355.x
42 https://doi.org/10.1126/science.298.5594.824
43 https://doi.org/10.1137/1.9781611972887.11
44 https://doi.org/10.1137/16m1087175
45 https://doi.org/10.1137/17m1130046
46 https://doi.org/10.1214/aoms/1177704472
47 https://doi.org/10.1353/sof.2006.0098
48 https://doi.org/10.1371/journal.pone.0143133
49 https://doi.org/10.2307/2946642
50 schema:datePublished 2019-12
51 schema:datePublishedReg 2019-12-01
52 schema:description Maritime transport accounts for a majority of trades in volume, of which 70% in value is carried by container ships that transit regular routes on fixed schedules in the ocean. In the present paper, we analyse a data set of global liner shipping as a network of ports. In particular, we construct the network of the ports as the one-mode projection of a bipartite network composed of ports and ship routes. Like other transportation networks, global liner shipping networks may have core-periphery structure, where a core and a periphery are groups of densely and sparsely interconnected nodes, respectively. Core-periphery structure may have practical implications for understanding the robustness, efficiency and uneven development of international transportation systems. We develop an algorithm to detect core-periphery pairs in a network, which allows one to find core and peripheral nodes on different scales and uses a configuration model that accounts for the fact that the network is obtained by the one-mode projection of a bipartite network. We also found that most ports are core (as opposed to peripheral) ports and that ports in some countries in Europe, America and Asia belong to a global core-periphery pair across different scales, whereas ports in other countries do not.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N556ecf6670564ab4afa08d50d74dd35a
57 Nc4596bc6684246bea265d3bb030ae877
58 sg:journal.1045337
59 schema:name Multiscale core-periphery structure in a global liner shipping network
60 schema:pagination 404
61 schema:productId N33af001b423e490080bf9a5a17c172c0
62 N5e4ab7c00d984183b23b2d35db602398
63 N6df3f6ad256f4c15bc6aab84dfdea321
64 Nbbd0efd2e7fc403c8a9dcba3c817ba79
65 Neb7c260baa1a4ab29a66193823bf1b7c
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111615679
67 https://doi.org/10.1038/s41598-018-35922-2
68 schema:sdDatePublished 2019-04-11T08:58
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N898b65c2827f49229ead10f32dc6d48c
71 schema:url https://www.nature.com/articles/s41598-018-35922-2
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N25309a82596b481e8616d33f3c84ead5 rdf:first sg:person.013432461055.40
76 rdf:rest N317400df2a994c6c9b64bd8c0642472c
77 N317400df2a994c6c9b64bd8c0642472c rdf:first sg:person.0726214321.54
78 rdf:rest rdf:nil
79 N33af001b423e490080bf9a5a17c172c0 schema:name pubmed_id
80 schema:value 30674915
81 rdf:type schema:PropertyValue
82 N556ecf6670564ab4afa08d50d74dd35a schema:volumeNumber 9
83 rdf:type schema:PublicationVolume
84 N5e4ab7c00d984183b23b2d35db602398 schema:name readcube_id
85 schema:value 228b3b6ddc7b4152a932ac9293a5d9839a22c4b4a8415af4146c56eab9a5a8f3
86 rdf:type schema:PropertyValue
87 N6df3f6ad256f4c15bc6aab84dfdea321 schema:name doi
88 schema:value 10.1038/s41598-018-35922-2
89 rdf:type schema:PropertyValue
90 N898b65c2827f49229ead10f32dc6d48c schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nb0547f56e8324f188a0f71a78d8e6556 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
93 schema:familyName Xu
94 schema:givenName Mengqiao
95 rdf:type schema:Person
96 Nbbd0efd2e7fc403c8a9dcba3c817ba79 schema:name nlm_unique_id
97 schema:value 101563288
98 rdf:type schema:PropertyValue
99 Nc4596bc6684246bea265d3bb030ae877 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 Ndecfc360708043c7a55e0ae4736ff2a2 rdf:first Nb0547f56e8324f188a0f71a78d8e6556
102 rdf:rest N25309a82596b481e8616d33f3c84ead5
103 Neb7c260baa1a4ab29a66193823bf1b7c schema:name dimensions_id
104 schema:value pub.1111615679
105 rdf:type schema:PropertyValue
106 Nfb3cc0a276c0402cb82ffd5ac36f9d00 rdf:first sg:person.014361532074.90
107 rdf:rest Ndecfc360708043c7a55e0ae4736ff2a2
108 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
109 schema:name Technology
110 rdf:type schema:DefinedTerm
111 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
112 schema:name Communications Technologies
113 rdf:type schema:DefinedTerm
114 sg:journal.1045337 schema:issn 2045-2322
115 schema:name Scientific Reports
116 rdf:type schema:Periodical
117 sg:person.013432461055.40 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
118 schema:familyName Xia
119 schema:givenName Haoxiang
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013432461055.40
121 rdf:type schema:Person
122 sg:person.014361532074.90 schema:affiliation https://www.grid.ac/institutes/grid.5337.2
123 schema:familyName Kojaku
124 schema:givenName Sadamori
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014361532074.90
126 rdf:type schema:Person
127 sg:person.0726214321.54 schema:affiliation https://www.grid.ac/institutes/grid.30055.33
128 schema:familyName Masuda
129 schema:givenName Naoki
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726214321.54
131 rdf:type schema:Person
132 sg:pub.10.1007/978-3-642-21551-3_19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039017481
133 https://doi.org/10.1007/978-3-642-21551-3_19
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature03288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416471
136 https://doi.org/10.1038/nature03288
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature10011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045479836
139 https://doi.org/10.1038/nature10011
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/ncomms10441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044160641
142 https://doi.org/10.1038/ncomms10441
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nphys209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018047307
145 https://doi.org/10.1038/nphys209
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/s41598-018-25560-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103798227
148 https://doi.org/10.1038/s41598-018-25560-z
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/srep01467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053432818
151 https://doi.org/10.1038/srep01467
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/srep33441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040951087
154 https://doi.org/10.1038/srep33441
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/srep39467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008444547
157 https://doi.org/10.1038/srep39467
158 rdf:type schema:CreativeWork
159 sg:pub.10.1057/palgrave.mel.9100196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046960292
160 https://doi.org/10.1057/palgrave.mel.9100196
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.baae.2011.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005132732
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.jfi.2014.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048979477
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.physrep.2010.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022949845
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.socnet.2005.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001932315
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.socnet.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025142314
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.tre.2011.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029553100
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0378-8733(99)00019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029659870
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1017/s095679251600022x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053945859
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.0605965104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028061681
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1073/pnas.0701361104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053516074
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/01621459.1993.10476303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304387
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/1367-2630/aa6b38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085538201
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1088/1367-2630/aab547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103361362
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1088/1742-5468/2008/08/p08007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019336026
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1088/1742-5468/2008/10/p10008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037912856
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/acprof:oso/9780199206650.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098762313
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1093/comnet/cnt016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005337220
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1098/rsif.2009.0495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047026107
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physreve.72.046111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045404370
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physreve.74.016110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036285600
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physreve.76.036102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008670010
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreve.76.046115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039419897
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physreve.89.032810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047798174
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreve.96.052313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092905615
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physrevlett.109.118703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038267431
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/tpami.2005.237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742884
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1111/j.1471-0374.2011.00355.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010856544
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1137/1.9781611972887.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088800821
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1137/16m1087175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103799847
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1137/17m1130046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091111872
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1214/aoms/1177704472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046915289
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1353/sof.2006.0098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065050035
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1371/journal.pone.0143133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039769965
231 rdf:type schema:CreativeWork
232 https://doi.org/10.2307/2946642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070143931
233 rdf:type schema:CreativeWork
234 https://www.grid.ac/institutes/grid.30055.33 schema:alternateName Dalian University of Technology
235 schema:name Department of Engineering Mathematics, Merchant Venturers Building, University of Bristol, Woodland Road, BS8 1UB, Clifton, Bristol, United Kingdom
236 Faculty of Management and Economics, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, 116024, Dalian City, Liaoning Province, China
237 rdf:type schema:Organization
238 https://www.grid.ac/institutes/grid.5337.2 schema:alternateName University of Bristol
239 schema:name CREST, JST, Kawaguchi Center Building, 4-1-8, Honcho, 332-0012, Kawaguchi-shi, Saitama, Japan
240 Department of Engineering Mathematics, Merchant Venturers Building, University of Bristol, Woodland Road, BS8 1UB, Clifton, Bristol, United Kingdom
241 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...