Optimized cloaks made of near-zero materials for different-sized concealed targets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Zhenzhong Yu, Zhong Yang, Yuehong Wang, Haifei Si, Guoshu Zhao

ABSTRACT

The optimized cloaking design for conducting cylinders of different sizes is studied based on the Mie scattering theory. We construct a concentric multi-layered cloak made of alternating materials with isotropic dielectrics and epsilon-near-zero (ENZ) material, the thickness of which can be determined through genetic algorithm. As the radius of the conducting cylinder increases, high order scattering contributions are becoming evident, and more layers are needed. The scattering cross sections of three different radii of PEC cylinders are minimized by utilizing different numbers of multi-layers respectively. We find that eight or less optimized layers can cancel most of the scattering from a conducting cylinder with its dimension compared to wavelength, and more effectively when taking the ENZ material as the inner starting shell. The frequency dependence of total scattering is also studied, leading to the result that the bandwidth decreases as the size of concealed PEC cylinder increases. Furthermore, it is shown that the cloaking efficiency is less sensitive to the permittivity and thickness of the ENZ material, due to the small phase variation in the ENZ material. The multi-layered cloak designed for a PEC target can also be used to evidently reduce the scattering of a dielectric core and design a multi-layered elliptical cloak. More... »

PAGES

16739

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-34771-3

DOI

http://dx.doi.org/10.1038/s41598-018-34771-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109761001

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30425272


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jinling Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469528.4", 
          "name": [
            "School of Intelligence Science and Control Engineering, Jinling Institute of Technology, 211169, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Zhenzhong", 
        "id": "sg:person.010416627527.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416627527.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jinling Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469528.4", 
          "name": [
            "School of Intelligence Science and Control Engineering, Jinling Institute of Technology, 211169, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Zhong", 
        "id": "sg:person.014552466153.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552466153.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "School of Foreign Language, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yuehong", 
        "id": "sg:person.011474414644.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011474414644.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jinling Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469528.4", 
          "name": [
            "School of Intelligence Science and Control Engineering, Jinling Institute of Technology, 211169, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Si", 
        "givenName": "Haifei", 
        "id": "sg:person.013503745607.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013503745607.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jinling Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.469528.4", 
          "name": [
            "School of Intelligence Science and Control Engineering, Jinling Institute of Technology, 211169, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Guoshu", 
        "id": "sg:person.010127301743.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127301743.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003694778", 
          "https://doi.org/10.1038/nmat3030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.003318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005971226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006510901", 
          "https://doi.org/10.1038/srep09574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006510901", 
          "https://doi.org/10.1038/srep09574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008055728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssr.201105475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015614964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019262685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.016623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025657896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.016623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025657896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/44/18/185102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031864940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.093901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035222152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.093901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035222152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040623893", 
          "https://doi.org/10.1038/nphoton.2007.28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040623893", 
          "https://doi.org/10.1038/nphoton.2007.28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.073901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040670266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.073901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040670266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4831942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043972516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.011133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046376404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1449529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057707618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4796171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058071499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1674-1056/25/7/074101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059156527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.023806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.023806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.6.4370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060592879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.155122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.155122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.113901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.113901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.157403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.157403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.063903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.063903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2009.2016695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061498087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2010.2055789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061498860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.000847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065243652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aal2672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084500547"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The optimized cloaking design for conducting cylinders of different sizes is studied based on the Mie scattering theory. We construct a concentric multi-layered cloak made of alternating materials with isotropic dielectrics and epsilon-near-zero (ENZ) material, the thickness of which can be determined through genetic algorithm. As the radius of the conducting cylinder increases, high order scattering contributions are becoming evident, and more layers are needed. The scattering cross sections of three different radii of PEC cylinders are minimized by utilizing different numbers of multi-layers respectively. We find that eight or less optimized layers can cancel most of the scattering from a conducting cylinder with its dimension compared to wavelength, and more effectively when taking the ENZ material as the inner starting shell. The frequency dependence of total scattering is also studied, leading to the result that the bandwidth decreases as the size of concealed PEC cylinder increases. Furthermore, it is shown that the cloaking efficiency is less sensitive to the permittivity and thickness of the ENZ material, due to the small phase variation in the ENZ material. The multi-layered cloak designed for a PEC target can also be used to evidently reduce the scattering of a dielectric core and design a multi-layered elliptical cloak.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-34771-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Optimized cloaks made of near-zero materials for different-sized concealed targets", 
    "pagination": "16739", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a819d13a6557c9f47205e2e0669cc7e25a076bc79a962ae13ac1ff583bc344e4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30425272"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-34771-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109761001"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-34771-3", 
      "https://app.dimensions.ai/details/publication/pub.1109761001"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000278_0000000278/records_79615_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-34771-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34771-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34771-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34771-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34771-3'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-34771-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N8fd14042523c4234846a98b25988b860
4 schema:citation sg:pub.10.1038/nmat3030
5 sg:pub.10.1038/nphoton.2007.28
6 sg:pub.10.1038/srep09574
7 https://doi.org/10.1002/pssr.201105475
8 https://doi.org/10.1063/1.1449529
9 https://doi.org/10.1063/1.4796171
10 https://doi.org/10.1063/1.4831942
11 https://doi.org/10.1088/0022-3727/44/18/185102
12 https://doi.org/10.1088/1674-1056/25/7/074101
13 https://doi.org/10.1103/physreva.79.023806
14 https://doi.org/10.1103/physrevb.6.4370
15 https://doi.org/10.1103/physrevb.79.155122
16 https://doi.org/10.1103/physreve.72.016623
17 https://doi.org/10.1103/physrevlett.100.113901
18 https://doi.org/10.1103/physrevlett.102.093901
19 https://doi.org/10.1103/physrevlett.103.073901
20 https://doi.org/10.1103/physrevlett.97.157403
21 https://doi.org/10.1103/physrevlett.99.063903
22 https://doi.org/10.1109/tap.2009.2016695
23 https://doi.org/10.1109/tap.2010.2055789
24 https://doi.org/10.1126/science.1125907
25 https://doi.org/10.1126/science.1133628
26 https://doi.org/10.1126/science.aal2672
27 https://doi.org/10.1364/oe.15.003318
28 https://doi.org/10.1364/oe.15.011133
29 https://doi.org/10.1364/opex.13.000847
30 schema:datePublished 2018-12
31 schema:datePublishedReg 2018-12-01
32 schema:description The optimized cloaking design for conducting cylinders of different sizes is studied based on the Mie scattering theory. We construct a concentric multi-layered cloak made of alternating materials with isotropic dielectrics and epsilon-near-zero (ENZ) material, the thickness of which can be determined through genetic algorithm. As the radius of the conducting cylinder increases, high order scattering contributions are becoming evident, and more layers are needed. The scattering cross sections of three different radii of PEC cylinders are minimized by utilizing different numbers of multi-layers respectively. We find that eight or less optimized layers can cancel most of the scattering from a conducting cylinder with its dimension compared to wavelength, and more effectively when taking the ENZ material as the inner starting shell. The frequency dependence of total scattering is also studied, leading to the result that the bandwidth decreases as the size of concealed PEC cylinder increases. Furthermore, it is shown that the cloaking efficiency is less sensitive to the permittivity and thickness of the ENZ material, due to the small phase variation in the ENZ material. The multi-layered cloak designed for a PEC target can also be used to evidently reduce the scattering of a dielectric core and design a multi-layered elliptical cloak.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree true
36 schema:isPartOf N8a46a098ceb0415e933a4326d6e78dcc
37 Nc1732359ce7e4daa9d4c25195caf2618
38 sg:journal.1045337
39 schema:name Optimized cloaks made of near-zero materials for different-sized concealed targets
40 schema:pagination 16739
41 schema:productId N2e070618231c4eb2856f600f36aaa4ae
42 N5cc3935d10e54a7b803b896e013bb784
43 Ne377c7eee53a4d609072375ef9329d4b
44 Ne5af7b73283e4f0bbd4676325a4cf2bc
45 Nf62e11aef86241ccb692633b65023754
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109761001
47 https://doi.org/10.1038/s41598-018-34771-3
48 schema:sdDatePublished 2019-04-11T08:16
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher N46cc400bd4b0426f907082a692238477
51 schema:url https://www.nature.com/articles/s41598-018-34771-3
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N2e070618231c4eb2856f600f36aaa4ae schema:name readcube_id
56 schema:value a819d13a6557c9f47205e2e0669cc7e25a076bc79a962ae13ac1ff583bc344e4
57 rdf:type schema:PropertyValue
58 N3d8494de034243e089425c7ef648f043 rdf:first sg:person.010127301743.07
59 rdf:rest rdf:nil
60 N46cc400bd4b0426f907082a692238477 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N5cc3935d10e54a7b803b896e013bb784 schema:name doi
63 schema:value 10.1038/s41598-018-34771-3
64 rdf:type schema:PropertyValue
65 N6bd29063a9f747209ac621e445f684b3 rdf:first sg:person.014552466153.37
66 rdf:rest Nd1db59d9b38844e0a139aa4fbc4e94ec
67 N8a46a098ceb0415e933a4326d6e78dcc schema:volumeNumber 8
68 rdf:type schema:PublicationVolume
69 N8cdfdc3691cb4e3fa3629473d8822568 rdf:first sg:person.013503745607.41
70 rdf:rest N3d8494de034243e089425c7ef648f043
71 N8fd14042523c4234846a98b25988b860 rdf:first sg:person.010416627527.49
72 rdf:rest N6bd29063a9f747209ac621e445f684b3
73 Nc1732359ce7e4daa9d4c25195caf2618 schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 Nd1db59d9b38844e0a139aa4fbc4e94ec rdf:first sg:person.011474414644.89
76 rdf:rest N8cdfdc3691cb4e3fa3629473d8822568
77 Ne377c7eee53a4d609072375ef9329d4b schema:name pubmed_id
78 schema:value 30425272
79 rdf:type schema:PropertyValue
80 Ne5af7b73283e4f0bbd4676325a4cf2bc schema:name nlm_unique_id
81 schema:value 101563288
82 rdf:type schema:PropertyValue
83 Nf62e11aef86241ccb692633b65023754 schema:name dimensions_id
84 schema:value pub.1109761001
85 rdf:type schema:PropertyValue
86 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
87 schema:name Engineering
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
90 schema:name Materials Engineering
91 rdf:type schema:DefinedTerm
92 sg:journal.1045337 schema:issn 2045-2322
93 schema:name Scientific Reports
94 rdf:type schema:Periodical
95 sg:person.010127301743.07 schema:affiliation https://www.grid.ac/institutes/grid.469528.4
96 schema:familyName Zhao
97 schema:givenName Guoshu
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010127301743.07
99 rdf:type schema:Person
100 sg:person.010416627527.49 schema:affiliation https://www.grid.ac/institutes/grid.469528.4
101 schema:familyName Yu
102 schema:givenName Zhenzhong
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010416627527.49
104 rdf:type schema:Person
105 sg:person.011474414644.89 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
106 schema:familyName Wang
107 schema:givenName Yuehong
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011474414644.89
109 rdf:type schema:Person
110 sg:person.013503745607.41 schema:affiliation https://www.grid.ac/institutes/grid.469528.4
111 schema:familyName Si
112 schema:givenName Haifei
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013503745607.41
114 rdf:type schema:Person
115 sg:person.014552466153.37 schema:affiliation https://www.grid.ac/institutes/grid.469528.4
116 schema:familyName Yang
117 schema:givenName Zhong
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552466153.37
119 rdf:type schema:Person
120 sg:pub.10.1038/nmat3030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003694778
121 https://doi.org/10.1038/nmat3030
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nphoton.2007.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040623893
124 https://doi.org/10.1038/nphoton.2007.28
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/srep09574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006510901
127 https://doi.org/10.1038/srep09574
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/pssr.201105475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015614964
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.1449529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057707618
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.4796171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058071499
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.4831942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043972516
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0022-3727/44/18/185102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031864940
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/1674-1056/25/7/074101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059156527
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreva.79.023806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505467
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.6.4370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060592879
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevb.79.155122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060628057
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreve.72.016623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025657896
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrevlett.100.113901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753096
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevlett.102.093901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035222152
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevlett.103.073901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040670266
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.97.157403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832980
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.99.063903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834427
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tap.2009.2016695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061498087
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tap.2010.2055789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061498860
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1126/science.1125907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008055728
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1126/science.1133628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019262685
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1126/science.aal2672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084500547
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1364/oe.15.003318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005971226
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1364/oe.15.011133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046376404
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1364/opex.13.000847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065243652
174 rdf:type schema:CreativeWork
175 https://www.grid.ac/institutes/grid.440845.9 schema:alternateName Nanjing Xiaozhuang University
176 schema:name School of Foreign Language, Nanjing Xiaozhuang University, 211171, Nanjing, China
177 rdf:type schema:Organization
178 https://www.grid.ac/institutes/grid.469528.4 schema:alternateName Jinling Institute of Technology
179 schema:name School of Intelligence Science and Control Engineering, Jinling Institute of Technology, 211169, Nanjing, China
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...