Design of metalloproteins and novel protein folds using variational autoencoders View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Joe G. Greener, Lewis Moffat, David T Jones

ABSTRACT

The design of novel proteins has many applications but remains an attritional process with success in isolated cases. Meanwhile, deep learning technologies have exploded in popularity in recent years and are increasingly applicable to biology due to the rise in available data. We attempt to link protein design and deep learning by using variational autoencoders to generate protein sequences conditioned on desired properties. Potential copper and calcium binding sites are added to non-metal binding proteins without human intervention and compared to a hidden Markov model. In another use case, a grammar of protein structures is developed and used to produce sequences for a novel protein topology. One candidate structure is found to be stable by molecular dynamics simulation. The ability of our model to confine the vast search space of protein sequences and to scale easily has the potential to assist in a variety of protein design tasks. More... »

PAGES

16189

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-34533-1

DOI

http://dx.doi.org/10.1038/s41598-018-34533-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107871703

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30385875


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The Francis Crick Institute", 
          "id": "https://www.grid.ac/institutes/grid.451388.3", 
          "name": [
            "Department of Computer Science, University College London, Gower Street, WC1E 6BT, London, UK", 
            "Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greener", 
        "givenName": "Joe G.", 
        "id": "sg:person.01125667161.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125667161.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Francis Crick Institute", 
          "id": "https://www.grid.ac/institutes/grid.451388.3", 
          "name": [
            "Department of Computer Science, University College London, Gower Street, WC1E 6BT, London, UK", 
            "Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moffat", 
        "givenName": "Lewis", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Francis Crick Institute", 
          "id": "https://www.grid.ac/institutes/grid.451388.3", 
          "name": [
            "Department of Computer Science, University College London, Gower Street, WC1E 6BT, London, UK", 
            "Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jones", 
        "givenName": "David T", 
        "id": "sg:person.015137062344.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015137062344.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1128/mmbr.00009-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000663038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000961490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.24620", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000961490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1002195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001034143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002096924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.89.9.4163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007880009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-physchem-032210-103509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008467960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009762858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1218319110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011103018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014284701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/525172a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014506397", 
          "https://doi.org/10.1038/525172a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0141287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014761536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019181069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019181069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019751093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.str.2009.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020535621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(00)89044-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021130448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022885794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature19946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023334970", 
          "https://doi.org/10.1038/nature19946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023790270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026195332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027840351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.softx.2015.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028157022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(05)80134-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416657a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032338137", 
          "https://doi.org/10.1038/416657a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416657a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032338137", 
          "https://doi.org/10.1038/416657a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.235", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035055456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.22913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036974745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-7-s5-s13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041878388", 
          "https://doi.org/10.1186/1471-2105-7-s5-s13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa2245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043169478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-0-12-381270-4.00019-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046182923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.17.3389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047265454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1089427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047464076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048045831", 
          "https://doi.org/10.1038/nature03991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048045831", 
          "https://doi.org/10.1038/nature03991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048045831", 
          "https://doi.org/10.1038/nature03991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aad8036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049866195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051947060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052630315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.97.19.10383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052702234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar900015x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ar900015x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055151872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie071286k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055601660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie071286k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055601660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja054718w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055839860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja054718w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055839860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1208351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bsr20160179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083687641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan0693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090694144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aan0693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090694144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091926086", 
          "https://doi.org/10.1038/nature23912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature23912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091926086", 
          "https://doi.org/10.1038/nature23912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2017.08.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092246317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.2503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092352200", 
          "https://doi.org/10.1038/nchembio.2503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.2503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092352200", 
          "https://doi.org/10.1038/nchembio.2503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2017.374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095848868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acscentsci.7b00572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100346759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100553251", 
          "https://doi.org/10.1038/nchem.2927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100553251", 
          "https://doi.org/10.1038/nchem.2927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.2927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100553251", 
          "https://doi.org/10.1038/nchem.2927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jcim.7b00414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100553746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201713220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101364396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.201713220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101364396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-24760-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103494196", 
          "https://doi.org/10.1038/s41598-018-24760-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1800690115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103850736"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The design of novel proteins has many applications but remains an attritional process with success in isolated cases. Meanwhile, deep learning technologies have exploded in popularity in recent years and are increasingly applicable to biology due to the rise in available data. We attempt to link protein design and deep learning by using variational autoencoders to generate protein sequences conditioned on desired properties. Potential copper and calcium binding sites are added to non-metal binding proteins without human intervention and compared to a hidden Markov model. In another use case, a grammar of protein structures is developed and used to produce sequences for a novel protein topology. One candidate structure is found to be stable by molecular dynamics simulation. The ability of our model to confine the vast search space of protein sequences and to scale easily has the potential to assist in a variety of protein design tasks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-34533-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6798250", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3957559", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6384289", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Design of metalloproteins and novel protein folds using variational autoencoders", 
    "pagination": "16189", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c4fabbb82813642c9ac82d087c31ac49247b08c6f1ad312bb33ab515aa0e0fc5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30385875"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-34533-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107871703"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-34533-1", 
      "https://app.dimensions.ai/details/publication/pub.1107871703"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-34533-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34533-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34533-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34533-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34533-1'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      80 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-34533-1 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N4a367badb07c49a0a33390cf8e01f9cc
4 schema:citation sg:pub.10.1038/416657a
5 sg:pub.10.1038/525172a
6 sg:pub.10.1038/nature03991
7 sg:pub.10.1038/nature19946
8 sg:pub.10.1038/nature23912
9 sg:pub.10.1038/nchem.2927
10 sg:pub.10.1038/nchembio.2503
11 sg:pub.10.1038/s41598-018-24760-x
12 sg:pub.10.1186/1471-2105-7-s5-s13
13 https://doi.org/10.1002/anie.201713220
14 https://doi.org/10.1002/prot.22488
15 https://doi.org/10.1002/prot.22913
16 https://doi.org/10.1002/prot.24620
17 https://doi.org/10.1016/b978-0-12-381270-4.00019-6
18 https://doi.org/10.1016/j.bpj.2017.08.039
19 https://doi.org/10.1016/j.jmb.2004.07.019
20 https://doi.org/10.1016/j.softx.2015.06.001
21 https://doi.org/10.1016/j.str.2009.07.012
22 https://doi.org/10.1016/s0022-2836(05)80134-2
23 https://doi.org/10.1016/s0968-0004(00)89044-1
24 https://doi.org/10.1021/acs.jcim.7b00414
25 https://doi.org/10.1021/acscentsci.7b00572
26 https://doi.org/10.1021/ar900015x
27 https://doi.org/10.1021/ie071286k
28 https://doi.org/10.1021/ja054718w
29 https://doi.org/10.1042/bsr20160179
30 https://doi.org/10.1073/pnas.1218319110
31 https://doi.org/10.1073/pnas.1800690115
32 https://doi.org/10.1073/pnas.89.9.4163
33 https://doi.org/10.1073/pnas.97.19.10383
34 https://doi.org/10.1093/bioinformatics/btg362
35 https://doi.org/10.1093/bioinformatics/btm270
36 https://doi.org/10.1093/nar/25.17.3389
37 https://doi.org/10.1093/nar/28.1.235
38 https://doi.org/10.1093/nar/gkl163
39 https://doi.org/10.1093/nar/gkq366
40 https://doi.org/10.1093/nar/gks1063
41 https://doi.org/10.1093/nar/gkt381
42 https://doi.org/10.1093/nar/gku947
43 https://doi.org/10.1093/nar/gkw1099
44 https://doi.org/10.1109/cvpr.2017.374
45 https://doi.org/10.1126/science.1089427
46 https://doi.org/10.1126/science.1208351
47 https://doi.org/10.1126/science.aaa2245
48 https://doi.org/10.1126/science.aad8036
49 https://doi.org/10.1126/science.aan0693
50 https://doi.org/10.1128/mmbr.00009-08
51 https://doi.org/10.1146/annurev-physchem-032210-103509
52 https://doi.org/10.1371/journal.pcbi.1002195
53 https://doi.org/10.1371/journal.pcbi.1003926
54 https://doi.org/10.1371/journal.pone.0141287
55 schema:datePublished 2018-12
56 schema:datePublishedReg 2018-12-01
57 schema:description The design of novel proteins has many applications but remains an attritional process with success in isolated cases. Meanwhile, deep learning technologies have exploded in popularity in recent years and are increasingly applicable to biology due to the rise in available data. We attempt to link protein design and deep learning by using variational autoencoders to generate protein sequences conditioned on desired properties. Potential copper and calcium binding sites are added to non-metal binding proteins without human intervention and compared to a hidden Markov model. In another use case, a grammar of protein structures is developed and used to produce sequences for a novel protein topology. One candidate structure is found to be stable by molecular dynamics simulation. The ability of our model to confine the vast search space of protein sequences and to scale easily has the potential to assist in a variety of protein design tasks.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree true
61 schema:isPartOf N1f40788327e84ba4a0c36f932fe440f6
62 Nd7a4400fe6974c5f9d547a743b23b844
63 sg:journal.1045337
64 schema:name Design of metalloproteins and novel protein folds using variational autoencoders
65 schema:pagination 16189
66 schema:productId N2183ec00023b49e2b50412c6dde37754
67 N2b42f6ce8d47447a8efd57c4f09ebcf6
68 N74f3fdfacdf9412c9def20d9c26701e3
69 Nb3fdba8257004798972ceb21a02bdc4f
70 Nccaf392c0aea4fc0a9d69fee5b8cf9b9
71 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107871703
72 https://doi.org/10.1038/s41598-018-34533-1
73 schema:sdDatePublished 2019-04-10T14:24
74 schema:sdLicense https://scigraph.springernature.com/explorer/license/
75 schema:sdPublisher N8de25521ac9c4f32b02633ed313d7f03
76 schema:url https://www.nature.com/articles/s41598-018-34533-1
77 sgo:license sg:explorer/license/
78 sgo:sdDataset articles
79 rdf:type schema:ScholarlyArticle
80 N14fc2c23c37a4e289b1d0d4f5fa26f13 rdf:first Ncc388987ddd14fddba5d6d1b12e8a054
81 rdf:rest N77605418414142369917f2687eeb1251
82 N1f40788327e84ba4a0c36f932fe440f6 schema:volumeNumber 8
83 rdf:type schema:PublicationVolume
84 N2183ec00023b49e2b50412c6dde37754 schema:name readcube_id
85 schema:value c4fabbb82813642c9ac82d087c31ac49247b08c6f1ad312bb33ab515aa0e0fc5
86 rdf:type schema:PropertyValue
87 N2b42f6ce8d47447a8efd57c4f09ebcf6 schema:name doi
88 schema:value 10.1038/s41598-018-34533-1
89 rdf:type schema:PropertyValue
90 N4a367badb07c49a0a33390cf8e01f9cc rdf:first sg:person.01125667161.40
91 rdf:rest N14fc2c23c37a4e289b1d0d4f5fa26f13
92 N74f3fdfacdf9412c9def20d9c26701e3 schema:name dimensions_id
93 schema:value pub.1107871703
94 rdf:type schema:PropertyValue
95 N77605418414142369917f2687eeb1251 rdf:first sg:person.015137062344.22
96 rdf:rest rdf:nil
97 N8de25521ac9c4f32b02633ed313d7f03 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 Nb3fdba8257004798972ceb21a02bdc4f schema:name nlm_unique_id
100 schema:value 101563288
101 rdf:type schema:PropertyValue
102 Ncc388987ddd14fddba5d6d1b12e8a054 schema:affiliation https://www.grid.ac/institutes/grid.451388.3
103 schema:familyName Moffat
104 schema:givenName Lewis
105 rdf:type schema:Person
106 Nccaf392c0aea4fc0a9d69fee5b8cf9b9 schema:name pubmed_id
107 schema:value 30385875
108 rdf:type schema:PropertyValue
109 Nd7a4400fe6974c5f9d547a743b23b844 schema:issueNumber 1
110 rdf:type schema:PublicationIssue
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biochemistry and Cell Biology
116 rdf:type schema:DefinedTerm
117 sg:grant.3957559 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-34533-1
118 rdf:type schema:MonetaryGrant
119 sg:grant.6384289 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-34533-1
120 rdf:type schema:MonetaryGrant
121 sg:grant.6798250 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-34533-1
122 rdf:type schema:MonetaryGrant
123 sg:journal.1045337 schema:issn 2045-2322
124 schema:name Scientific Reports
125 rdf:type schema:Periodical
126 sg:person.01125667161.40 schema:affiliation https://www.grid.ac/institutes/grid.451388.3
127 schema:familyName Greener
128 schema:givenName Joe G.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125667161.40
130 rdf:type schema:Person
131 sg:person.015137062344.22 schema:affiliation https://www.grid.ac/institutes/grid.451388.3
132 schema:familyName Jones
133 schema:givenName David T
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015137062344.22
135 rdf:type schema:Person
136 sg:pub.10.1038/416657a schema:sameAs https://app.dimensions.ai/details/publication/pub.1032338137
137 https://doi.org/10.1038/416657a
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/525172a schema:sameAs https://app.dimensions.ai/details/publication/pub.1014506397
140 https://doi.org/10.1038/525172a
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/nature03991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048045831
143 https://doi.org/10.1038/nature03991
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/nature19946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023334970
146 https://doi.org/10.1038/nature19946
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nature23912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091926086
149 https://doi.org/10.1038/nature23912
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nchem.2927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100553251
152 https://doi.org/10.1038/nchem.2927
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nchembio.2503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092352200
155 https://doi.org/10.1038/nchembio.2503
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/s41598-018-24760-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1103494196
158 https://doi.org/10.1038/s41598-018-24760-x
159 rdf:type schema:CreativeWork
160 sg:pub.10.1186/1471-2105-7-s5-s13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041878388
161 https://doi.org/10.1186/1471-2105-7-s5-s13
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/anie.201713220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101364396
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/prot.22488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019181069
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/prot.22913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036974745
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/prot.24620 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000961490
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/b978-0-12-381270-4.00019-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046182923
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.bpj.2017.08.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092246317
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.jmb.2004.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009762858
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.softx.2015.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028157022
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.str.2009.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020535621
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0022-2836(05)80134-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477247
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0968-0004(00)89044-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021130448
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1021/acs.jcim.7b00414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100553746
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1021/acscentsci.7b00572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100346759
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/ar900015x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055151872
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/ie071286k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055601660
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/ja054718w schema:sameAs https://app.dimensions.ai/details/publication/pub.1055839860
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1042/bsr20160179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083687641
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1073/pnas.1218319110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011103018
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1073/pnas.1800690115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103850736
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.89.9.4163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007880009
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.97.19.10383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052702234
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/bioinformatics/btg362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014284701
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/btm270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002096924
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/nar/25.17.3389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047265454
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/nar/28.1.235 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035055456
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/nar/gkl163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026195332
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/nar/gkq366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019751093
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/gks1063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052630315
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/gkt381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051947060
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/gku947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027840351
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gkw1099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022885794
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/cvpr.2017.374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095848868
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1126/science.1089427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047464076
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1126/science.1208351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464867
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.aaa2245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043169478
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.aad8036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049866195
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1126/science.aan0693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090694144
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1128/mmbr.00009-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000663038
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1146/annurev-physchem-032210-103509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008467960
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1371/journal.pcbi.1002195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001034143
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1371/journal.pcbi.1003926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023790270
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1371/journal.pone.0141287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014761536
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.451388.3 schema:alternateName The Francis Crick Institute
248 schema:name Department of Computer Science, University College London, Gower Street, WC1E 6BT, London, UK
249 Francis Crick Institute, 1 Midland Road, NW1 1AT, London, UK
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...