Deep learning enables automated scoring of liver fibrosis stages View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Yang Yu, Jiahao Wang, Chan Way Ng, Yukun Ma, Shupei Mo, Eliza Li Shan Fong, Jiangwa Xing, Ziwei Song, Yufei Xie, Ke Si, Aileen Wee, Roy E. Welsch, Peter T. C. So, Hanry Yu

ABSTRACT

Current liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without the need for preprocessing through learning from a large dataset of images. We investigated the performance of classification models built using a deep learning-based algorithm pre-trained using multiple sources of images to score liver fibrosis and compared them against conventional non-deep learning-based algorithms - artificial neural networks (ANN), multinomial logistic regression (MLR), support vector machines (SVM) and random forests (RF). Automated feature classification and fibrosis scoring were achieved by using a transfer learning-based deep learning network, AlexNet-Convolutional Neural Networks (CNN), with balanced area under receiver operating characteristic (AUROC) values of up to 0.85-0.95 versus ANN (AUROC of up to 0.87-1.00), MLR (AUROC of up to 0.73-1.00), SVM (AUROC of up to 0.69-0.99) and RF (AUROC of up to 0.94-0.99). Results indicate that a deep learning-based algorithm with transfer learning enables the construction of a fully automated and accurate prediction model for scoring liver fibrosis stages that is comparable to other conventional non-deep learning-based algorithms that are not fully automated. More... »

PAGES

16016

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-34300-2

DOI

http://dx.doi.org/10.1038/s41598-018-34300-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107829179

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30375454


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Singapore-MIT Alliance for Research and Technology", 
          "id": "https://www.grid.ac/institutes/grid.429485.6", 
          "name": [
            "Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore", 
            "Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore", 
            "BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, 138602, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yang", 
        "id": "sg:person.015562020733.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015562020733.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Institute of Neuroscience, Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, 310058, Zhejiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jiahao", 
        "id": "sg:person.014030750112.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030750112.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore", 
            "NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 117411, Singapore, Singapore", 
            "Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ng", 
        "givenName": "Chan Way", 
        "id": "sg:person.07616432477.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616432477.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore", 
            "Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Yukun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioengineering and Nanotechnology", 
          "id": "https://www.grid.ac/institutes/grid.418830.6", 
          "name": [
            "Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mo", 
        "givenName": "Shupei", 
        "id": "sg:person.01214001376.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214001376.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Biomedical Engineering, National University of Singapore, 117583, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fong", 
        "givenName": "Eliza Li Shan", 
        "id": "sg:person.0575455331.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575455331.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Bioengineering and Nanotechnology", 
          "id": "https://www.grid.ac/institutes/grid.418830.6", 
          "name": [
            "Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Jiangwa", 
        "id": "sg:person.01333675744.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333675744.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore", 
            "Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Ziwei", 
        "id": "sg:person.014131162277.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131162277.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Duke-NUS Graduate Medical School Singapore, National University of Singapore, 169857, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Yufei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "Institute of Neuroscience, Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, 310058, Zhejiang, China", 
            "State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Zhejiang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Si", 
        "givenName": "Ke", 
        "id": "sg:person.01034215133.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034215133.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Pathology, National University Hospital, 119074, Singapore, Singapore", 
            "Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wee", 
        "givenName": "Aileen", 
        "id": "sg:person.01070505264.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070505264.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Sloan School of Management, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
            "Center for Statistics and Data Science, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Welsch", 
        "givenName": "Roy E.", 
        "id": "sg:person.0710753520.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710753520.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, 138602, Singapore, Singapore", 
            "Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA", 
            "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "So", 
        "givenName": "Peter T. C.", 
        "id": "sg:person.0730602343.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730602343.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University Health System", 
          "id": "https://www.grid.ac/institutes/grid.410759.e", 
          "name": [
            "Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore", 
            "Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore", 
            "BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, 138602, Singapore, Singapore", 
            "Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore", 
            "Confocal Microscopy Unit & Flow Cytometry Laboratory, National University Health System, 119228, Singapore, Singapore", 
            "Gastroenterology Department, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Hanry", 
        "id": "sg:person.01324433417.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324433417.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1136/gut.2005.084475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000094140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/4710842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001767722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep04636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005589771", 
          "https://doi.org/10.1038/srep04636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2014/468324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008662415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.1840010511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008814636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1541-0420.2008.01177.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011934617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6947-12-55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015317265", 
          "https://doi.org/10.1186/1472-6947-12-55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.jmi.2.4.041004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020753238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2012.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022844028", 
          "https://doi.org/10.1038/nprot.2012.009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.29009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028049929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2036.2010.04556.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031179851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-8278(91)90084-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034246656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2014.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035278593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035955828", 
          "https://doi.org/10.1038/srep02190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0168-8278(95)80226-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037903619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hep.510240201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038541144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jbio.201500001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042920080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep12962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046158269", 
          "https://doi.org/10.1038/srep12962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jhep.2007.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049343412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/2636390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053128721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.977323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061219694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmi.2016.2528162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061696701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082598263", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-bioeng-071516-044442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084228312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco_a_00990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085962510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1178222617712994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086009344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1178222617712994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086009344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compmedimag.2017.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086064289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compbiomed.2017.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090834050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2017171928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100445919"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Current liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without the need for preprocessing through learning from a large dataset of images. We investigated the performance of classification models built using a deep learning-based algorithm pre-trained using multiple sources of images to score liver fibrosis and compared them against conventional non-deep learning-based algorithms - artificial neural networks (ANN), multinomial logistic regression (MLR), support vector machines (SVM) and random forests (RF). Automated feature classification and fibrosis scoring were achieved by using a transfer learning-based deep learning network, AlexNet-Convolutional Neural Networks (CNN), with balanced area under receiver operating characteristic (AUROC) values of up to 0.85-0.95 versus ANN (AUROC of up to 0.87-1.00), MLR (AUROC of up to 0.73-1.00), SVM (AUROC of up to 0.69-0.99) and RF (AUROC of up to 0.94-0.99). Results indicate that a deep learning-based algorithm with transfer learning enables the construction of a fully automated and accurate prediction model for scoring liver fibrosis stages that is comparable to other conventional non-deep learning-based algorithms that are not fully automated.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-34300-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439663", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Deep learning enables automated scoring of liver fibrosis stages", 
    "pagination": "16016", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "21f8143a1b274f61bb9284d100981355ed34c1da0114bee063259c134b471f87"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30375454"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-34300-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107829179"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-34300-2", 
      "https://app.dimensions.ai/details/publication/pub.1107829179"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46772_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-34300-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34300-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34300-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34300-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-34300-2'


 

This table displays all metadata directly associated to this object as RDF triples.

284 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-34300-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Naba7746bdbfb4143a4a43d4af7497782
4 schema:citation sg:pub.10.1038/nprot.2012.009
5 sg:pub.10.1038/srep02190
6 sg:pub.10.1038/srep04636
7 sg:pub.10.1038/srep12962
8 sg:pub.10.1186/1472-6947-12-55
9 https://app.dimensions.ai/details/publication/pub.1082598263
10 https://doi.org/10.1002/hep.1840010511
11 https://doi.org/10.1002/hep.29009
12 https://doi.org/10.1002/hep.510240201
13 https://doi.org/10.1002/jbio.201500001
14 https://doi.org/10.1016/0168-8278(91)90084-o
15 https://doi.org/10.1016/0168-8278(95)80226-6
16 https://doi.org/10.1016/j.compbiomed.2017.07.012
17 https://doi.org/10.1016/j.compmedimag.2017.06.001
18 https://doi.org/10.1016/j.jhep.2007.07.006
19 https://doi.org/10.1016/j.jhep.2014.02.015
20 https://doi.org/10.1109/72.977323
21 https://doi.org/10.1109/tmi.2016.2528162
22 https://doi.org/10.1111/j.1365-2036.2010.04556.x
23 https://doi.org/10.1111/j.1541-0420.2008.01177.x
24 https://doi.org/10.1117/1.jmi.2.4.041004
25 https://doi.org/10.1136/gut.2005.084475
26 https://doi.org/10.1146/annurev-bioeng-071516-044442
27 https://doi.org/10.1148/radiol.2017171928
28 https://doi.org/10.1155/2014/468324
29 https://doi.org/10.1155/2016/2636390
30 https://doi.org/10.1155/2016/4710842
31 https://doi.org/10.1162/neco_a_00990
32 https://doi.org/10.1177/1178222617712994
33 schema:datePublished 2018-12
34 schema:datePublishedReg 2018-12-01
35 schema:description Current liver fibrosis scoring by computer-assisted image analytics is not fully automated as it requires manual preprocessing (segmentation and feature extraction) typically based on domain knowledge in liver pathology. Deep learning-based algorithms can potentially classify these images without the need for preprocessing through learning from a large dataset of images. We investigated the performance of classification models built using a deep learning-based algorithm pre-trained using multiple sources of images to score liver fibrosis and compared them against conventional non-deep learning-based algorithms - artificial neural networks (ANN), multinomial logistic regression (MLR), support vector machines (SVM) and random forests (RF). Automated feature classification and fibrosis scoring were achieved by using a transfer learning-based deep learning network, AlexNet-Convolutional Neural Networks (CNN), with balanced area under receiver operating characteristic (AUROC) values of up to 0.85-0.95 versus ANN (AUROC of up to 0.87-1.00), MLR (AUROC of up to 0.73-1.00), SVM (AUROC of up to 0.69-0.99) and RF (AUROC of up to 0.94-0.99). Results indicate that a deep learning-based algorithm with transfer learning enables the construction of a fully automated and accurate prediction model for scoring liver fibrosis stages that is comparable to other conventional non-deep learning-based algorithms that are not fully automated.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N004ad637f84f4bbfb97b38687a0e779d
40 Nb324f977d40d49e7816c9f4909a94c82
41 sg:journal.1045337
42 schema:name Deep learning enables automated scoring of liver fibrosis stages
43 schema:pagination 16016
44 schema:productId N4c2ff41424d045e6814e04a26e9e3a85
45 N7e2e383c16e94ea18871d5b1b0a00b58
46 N90d27eeb3a464940ae14021810e4526f
47 N9f507c1b1c254ce0ab00ed2ca27f1cd9
48 Nf7dc2f87ffe945a5aa0f20b8ea49ef32
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107829179
50 https://doi.org/10.1038/s41598-018-34300-2
51 schema:sdDatePublished 2019-04-11T13:35
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N562298516fec492c962fc638c38838f1
54 schema:url https://www.nature.com/articles/s41598-018-34300-2
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N004ad637f84f4bbfb97b38687a0e779d schema:issueNumber 1
59 rdf:type schema:PublicationIssue
60 N155595a7bcd94397a18c479116e85ed8 rdf:first sg:person.01034215133.97
61 rdf:rest Ncca776b8f1d84a3bbe538aee87694e9c
62 N16475ccf22e54c78b6cb43a65f89e2e8 rdf:first Na2c692252acf49418c6f86ccbf006747
63 rdf:rest Na32bb9d90f434c559660a01984ab31e9
64 N1d8a2f84c2e741238a0cc926ab8e2f63 rdf:first sg:person.014131162277.25
65 rdf:rest N79f6fb0aa8234944975a6dbaa816a21f
66 N4c2ff41424d045e6814e04a26e9e3a85 schema:name nlm_unique_id
67 schema:value 101563288
68 rdf:type schema:PropertyValue
69 N562298516fec492c962fc638c38838f1 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N64fb4690151b482da6e8a170ce8fb897 rdf:first sg:person.014030750112.53
72 rdf:rest N6e25502917f84b5bb785e80333f195b5
73 N6e25502917f84b5bb785e80333f195b5 rdf:first sg:person.07616432477.52
74 rdf:rest N16475ccf22e54c78b6cb43a65f89e2e8
75 N79f6fb0aa8234944975a6dbaa816a21f rdf:first Nef5116fef9334766986e149261f79634
76 rdf:rest N155595a7bcd94397a18c479116e85ed8
77 N7e2e383c16e94ea18871d5b1b0a00b58 schema:name dimensions_id
78 schema:value pub.1107829179
79 rdf:type schema:PropertyValue
80 N90d27eeb3a464940ae14021810e4526f schema:name pubmed_id
81 schema:value 30375454
82 rdf:type schema:PropertyValue
83 N9b212929bd4d42c9b602a08aa29de726 rdf:first sg:person.01333675744.44
84 rdf:rest N1d8a2f84c2e741238a0cc926ab8e2f63
85 N9e029f55193f4c6aadae55ccb47ecc16 rdf:first sg:person.0575455331.95
86 rdf:rest N9b212929bd4d42c9b602a08aa29de726
87 N9f507c1b1c254ce0ab00ed2ca27f1cd9 schema:name doi
88 schema:value 10.1038/s41598-018-34300-2
89 rdf:type schema:PropertyValue
90 Na2c692252acf49418c6f86ccbf006747 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
91 schema:familyName Ma
92 schema:givenName Yukun
93 rdf:type schema:Person
94 Na32bb9d90f434c559660a01984ab31e9 rdf:first sg:person.01214001376.38
95 rdf:rest N9e029f55193f4c6aadae55ccb47ecc16
96 Na4e1dfe7358d43aca4845d65fbe4dd18 rdf:first sg:person.0710753520.24
97 rdf:rest Nfaea1909aaea47bfb6f68606e068a6ab
98 Naba7746bdbfb4143a4a43d4af7497782 rdf:first sg:person.015562020733.75
99 rdf:rest N64fb4690151b482da6e8a170ce8fb897
100 Nb324f977d40d49e7816c9f4909a94c82 schema:volumeNumber 8
101 rdf:type schema:PublicationVolume
102 Ncca776b8f1d84a3bbe538aee87694e9c rdf:first sg:person.01070505264.22
103 rdf:rest Na4e1dfe7358d43aca4845d65fbe4dd18
104 Nd82f04a0b4034a6fbd84a6c8903e2207 rdf:first sg:person.01324433417.31
105 rdf:rest rdf:nil
106 Nef5116fef9334766986e149261f79634 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
107 schema:familyName Xie
108 schema:givenName Yufei
109 rdf:type schema:Person
110 Nf7dc2f87ffe945a5aa0f20b8ea49ef32 schema:name readcube_id
111 schema:value 21f8143a1b274f61bb9284d100981355ed34c1da0114bee063259c134b471f87
112 rdf:type schema:PropertyValue
113 Nfaea1909aaea47bfb6f68606e068a6ab rdf:first sg:person.0730602343.72
114 rdf:rest Nd82f04a0b4034a6fbd84a6c8903e2207
115 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
116 schema:name Information and Computing Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
119 schema:name Artificial Intelligence and Image Processing
120 rdf:type schema:DefinedTerm
121 sg:grant.2439663 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-34300-2
122 rdf:type schema:MonetaryGrant
123 sg:journal.1045337 schema:issn 2045-2322
124 schema:name Scientific Reports
125 rdf:type schema:Periodical
126 sg:person.01034215133.97 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
127 schema:familyName Si
128 schema:givenName Ke
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034215133.97
130 rdf:type schema:Person
131 sg:person.01070505264.22 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
132 schema:familyName Wee
133 schema:givenName Aileen
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070505264.22
135 rdf:type schema:Person
136 sg:person.01214001376.38 schema:affiliation https://www.grid.ac/institutes/grid.418830.6
137 schema:familyName Mo
138 schema:givenName Shupei
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01214001376.38
140 rdf:type schema:Person
141 sg:person.01324433417.31 schema:affiliation https://www.grid.ac/institutes/grid.410759.e
142 schema:familyName Yu
143 schema:givenName Hanry
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324433417.31
145 rdf:type schema:Person
146 sg:person.01333675744.44 schema:affiliation https://www.grid.ac/institutes/grid.418830.6
147 schema:familyName Xing
148 schema:givenName Jiangwa
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333675744.44
150 rdf:type schema:Person
151 sg:person.014030750112.53 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
152 schema:familyName Wang
153 schema:givenName Jiahao
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014030750112.53
155 rdf:type schema:Person
156 sg:person.014131162277.25 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
157 schema:familyName Song
158 schema:givenName Ziwei
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014131162277.25
160 rdf:type schema:Person
161 sg:person.015562020733.75 schema:affiliation https://www.grid.ac/institutes/grid.429485.6
162 schema:familyName Yu
163 schema:givenName Yang
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015562020733.75
165 rdf:type schema:Person
166 sg:person.0575455331.95 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
167 schema:familyName Fong
168 schema:givenName Eliza Li Shan
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0575455331.95
170 rdf:type schema:Person
171 sg:person.0710753520.24 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
172 schema:familyName Welsch
173 schema:givenName Roy E.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710753520.24
175 rdf:type schema:Person
176 sg:person.0730602343.72 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
177 schema:familyName So
178 schema:givenName Peter T. C.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730602343.72
180 rdf:type schema:Person
181 sg:person.07616432477.52 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
182 schema:familyName Ng
183 schema:givenName Chan Way
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07616432477.52
185 rdf:type schema:Person
186 sg:pub.10.1038/nprot.2012.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022844028
187 https://doi.org/10.1038/nprot.2012.009
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/srep02190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035955828
190 https://doi.org/10.1038/srep02190
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/srep04636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005589771
193 https://doi.org/10.1038/srep04636
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/srep12962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046158269
196 https://doi.org/10.1038/srep12962
197 rdf:type schema:CreativeWork
198 sg:pub.10.1186/1472-6947-12-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015317265
199 https://doi.org/10.1186/1472-6947-12-55
200 rdf:type schema:CreativeWork
201 https://app.dimensions.ai/details/publication/pub.1082598263 schema:CreativeWork
202 https://doi.org/10.1002/hep.1840010511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008814636
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/hep.29009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028049929
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/hep.510240201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038541144
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/jbio.201500001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042920080
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/0168-8278(91)90084-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1034246656
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0168-8278(95)80226-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037903619
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.compbiomed.2017.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090834050
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.compmedimag.2017.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086064289
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.jhep.2007.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049343412
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.jhep.2014.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035278593
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/72.977323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061219694
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/tmi.2016.2528162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061696701
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1111/j.1365-2036.2010.04556.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031179851
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1111/j.1541-0420.2008.01177.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011934617
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1117/1.jmi.2.4.041004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020753238
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1136/gut.2005.084475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000094140
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1146/annurev-bioeng-071516-044442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084228312
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1148/radiol.2017171928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100445919
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1155/2014/468324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008662415
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1155/2016/2636390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053128721
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1155/2016/4710842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001767722
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1162/neco_a_00990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085962510
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1177/1178222617712994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086009344
247 rdf:type schema:CreativeWork
248 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
249 schema:name BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, 138602, Singapore, Singapore
250 Center for Statistics and Data Science, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
251 Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
252 Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
253 Sloan School of Management, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
254 rdf:type schema:Organization
255 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
256 schema:name Institute of Neuroscience, Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, School of Medicine, Zhejiang University, 310058, Zhejiang, China
257 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Zhejiang, China
258 rdf:type schema:Organization
259 https://www.grid.ac/institutes/grid.410759.e schema:alternateName National University Health System
260 schema:name BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, 138602, Singapore, Singapore
261 Confocal Microscopy Unit & Flow Cytometry Laboratory, National University Health System, 119228, Singapore, Singapore
262 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
263 Gastroenterology Department, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
264 Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore
265 Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.418830.6 schema:alternateName Institute of Bioengineering and Nanotechnology
268 schema:name Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore
269 rdf:type schema:Organization
270 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
271 schema:name Department of Biomedical Engineering, National University of Singapore, 117583, Singapore, Singapore
272 Department of Pathology, National University Hospital, 119074, Singapore, Singapore
273 Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, 119074, Singapore, Singapore
274 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
275 Duke-NUS Graduate Medical School Singapore, National University of Singapore, 169857, Singapore, Singapore
276 Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore
277 Mechanobiology Institute, National University of Singapore, 117411, Singapore, Singapore
278 NUS Graduate School of Integrative Sciences and Engineering, National University of Singapore, 117411, Singapore, Singapore
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.429485.6 schema:alternateName Singapore-MIT Alliance for Research and Technology
281 schema:name BioSystems and Micromechanics (BioSyM), Singapore-MIT Alliance for Research and Technology, 138602, Singapore, Singapore
282 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore, Singapore
283 Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 138669, Singapore, Singapore
284 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...