Predicting the need for a reduced drug dose, at first prescription View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Adrien Coulet, Nigam H. Shah, Maxime Wack, Mohammad B. Chawki, Nicolas Jay, Michel Dumontier

ABSTRACT

Prescribing the right drug with the right dose is a central tenet of precision medicine. We examined the use of patients' prior Electronic Health Records to predict a reduction in drug dosage. We focus on drugs that interact with the P450 enzyme family, because their dosage is known to be sensitive and variable. We extracted diagnostic codes, conditions reported in clinical notes, and laboratory orders from Stanford's clinical data warehouse to construct cohorts of patients that either did or did not need a dose change. After feature selection, we trained models to predict the patients who will (or will not) require a dose change after being prescribed one of 34 drugs across 23 drug classes. Overall, we can predict (AUC ≥ 0.70-0.95) a dose reduction for 23 drugs and 22 drug classes. Several of these drugs are associated with clinical guidelines that recommend dose reduction exclusively in the case of adverse reaction. For these cases, a reduction in dosage may be considered as a surrogate for an adverse reaction, which our system could indirectly help predict and prevent. Our study illustrates the role machine learning may take in providing guidance in setting the starting dose for drugs associated with response variability. More... »

PAGES

15558

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-33980-0

DOI

http://dx.doi.org/10.1038/s41598-018-33980-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107670634

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30349060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1115", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pharmacology and Pharmaceutical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Universit\u00e9 de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France", 
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coulet", 
        "givenName": "Adrien", 
        "id": "sg:person.01222343441.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222343441.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shah", 
        "givenName": "Nigam H.", 
        "id": "sg:person.016713300752.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016713300752.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.410527.5", 
          "name": [
            "Service d\u2019Evaluation et d\u2019Information M\u00e9dicales, University Hospital of Nancy (CHRU), Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wack", 
        "givenName": "Maxime", 
        "id": "sg:person.01077545745.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077545745.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.410527.5", 
          "name": [
            "Service d\u2019Evaluation et d\u2019Information M\u00e9dicales, University Hospital of Nancy (CHRU), Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chawki", 
        "givenName": "Mohammad B.", 
        "id": "sg:person.015565664351.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015565664351.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre Hospitalier Universitaire de Nancy", 
          "id": "https://www.grid.ac/institutes/grid.410527.5", 
          "name": [
            "Universit\u00e9 de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France", 
            "Service d\u2019Evaluation et d\u2019Information M\u00e9dicales, University Hospital of Nancy (CHRU), Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jay", 
        "givenName": "Nicolas", 
        "id": "sg:person.0660055404.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660055404.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maastricht University", 
          "id": "https://www.grid.ac/institutes/grid.5012.6", 
          "name": [
            "Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA", 
            "Institute of Data Science, Maastricht University, Maastricht, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dumontier", 
        "givenName": "Michel", 
        "id": "sg:person.01324655201.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nrg3208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011498059", 
          "https://doi.org/10.1038/nrg3208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013280079", 
          "https://doi.org/10.1038/srep26094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2011.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013606705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014092449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pds.1984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014092449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6963-11-134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023705655", 
          "https://doi.org/10.1186/1472-6963-11-134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024215768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/pgs.11.164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024279758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3003377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028652785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmsb1503104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028678434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0164972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028974721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btl140", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033741877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cfg.255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034461940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2013.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034725967", 
          "https://doi.org/10.1038/clpt.2013.47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbi.2015.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034988404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.113.000106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035750901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circgenetics.113.000106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035750901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1377/hlthaff.26.2.w181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040516613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2757", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041461250", 
          "https://doi.org/10.1038/nbt.2757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bcp.12234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041758926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/clpt.2011.221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046856322", 
          "https://doi.org/10.1038/clpt.2011.221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bti565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050298763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e32834e1641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e32834e1641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/fpc.0b013e32834e1641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060340998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1389200023337054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069175364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075044377", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078138788", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpt.659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083737109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpt.951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092935026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpt.951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092935026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpt.1035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100684653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpt.1048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101124351"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Prescribing the right drug with the right dose is a central tenet of precision medicine. We examined the use of patients' prior Electronic Health Records to predict a reduction in drug dosage. We focus on drugs that interact with the P450 enzyme family, because their dosage is known to be sensitive and variable. We extracted diagnostic codes, conditions reported in clinical notes, and laboratory orders from Stanford's clinical data warehouse to construct cohorts of patients that either did or did not need a dose change. After feature selection, we trained models to predict the patients who will (or will not) require a dose change after being prescribed one of 34 drugs across 23 drug classes. Overall, we can predict (AUC\u2009\u2265\u20090.70-0.95) a dose reduction for 23 drugs and 22 drug classes. Several of these drugs are associated with clinical guidelines that recommend dose reduction exclusively in the case of adverse reaction. For these cases, a reduction in dosage may be considered as a surrogate for an adverse reaction, which our system could indirectly help predict and prevent. Our study illustrates the role machine learning may take in providing guidance in setting the starting dose for drugs associated with response variability.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-33980-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2521690", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6417188", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2545657", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Predicting the need for a reduced drug dose, at first prescription", 
    "pagination": "15558", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "90696b79f5afe7c436b79e2a9f266b9a66e3a9fa830b1d39b6dc1c171e41b98d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30349060"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-33980-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107670634"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-33980-0", 
      "https://app.dimensions.ai/details/publication/pub.1107670634"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000572.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-33980-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33980-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33980-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33980-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33980-0'


 

This table displays all metadata directly associated to this object as RDF triples.

206 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-33980-0 schema:about anzsrc-for:11
2 anzsrc-for:1115
3 schema:author N8ed69bfee13d4c18a256a4a575b6578f
4 schema:citation sg:pub.10.1038/clpt.2011.221
5 sg:pub.10.1038/clpt.2013.47
6 sg:pub.10.1038/nbt.2757
7 sg:pub.10.1038/nrg3208
8 sg:pub.10.1038/srep26094
9 sg:pub.10.1186/1472-6963-11-134
10 https://app.dimensions.ai/details/publication/pub.1075044377
11 https://app.dimensions.ai/details/publication/pub.1078138788
12 https://doi.org/10.1002/cfg.255
13 https://doi.org/10.1002/cpt.1035
14 https://doi.org/10.1002/cpt.1048
15 https://doi.org/10.1002/cpt.659
16 https://doi.org/10.1002/cpt.951
17 https://doi.org/10.1002/pds.1984
18 https://doi.org/10.1016/j.jbi.2011.04.007
19 https://doi.org/10.1016/j.jbi.2015.10.006
20 https://doi.org/10.1056/nejmsb1503104
21 https://doi.org/10.1093/bioinformatics/bti565
22 https://doi.org/10.1093/bioinformatics/btl140
23 https://doi.org/10.1097/fpc.0b013e32834e1641
24 https://doi.org/10.1111/bcp.12234
25 https://doi.org/10.1126/scitranslmed.3003377
26 https://doi.org/10.1161/circgenetics.113.000106
27 https://doi.org/10.1371/journal.pcbi.1003405
28 https://doi.org/10.1371/journal.pone.0164972
29 https://doi.org/10.1377/hlthaff.26.2.w181
30 https://doi.org/10.2174/1389200023337054
31 https://doi.org/10.2217/pgs.11.164
32 schema:datePublished 2018-12
33 schema:datePublishedReg 2018-12-01
34 schema:description Prescribing the right drug with the right dose is a central tenet of precision medicine. We examined the use of patients' prior Electronic Health Records to predict a reduction in drug dosage. We focus on drugs that interact with the P450 enzyme family, because their dosage is known to be sensitive and variable. We extracted diagnostic codes, conditions reported in clinical notes, and laboratory orders from Stanford's clinical data warehouse to construct cohorts of patients that either did or did not need a dose change. After feature selection, we trained models to predict the patients who will (or will not) require a dose change after being prescribed one of 34 drugs across 23 drug classes. Overall, we can predict (AUC ≥ 0.70-0.95) a dose reduction for 23 drugs and 22 drug classes. Several of these drugs are associated with clinical guidelines that recommend dose reduction exclusively in the case of adverse reaction. For these cases, a reduction in dosage may be considered as a surrogate for an adverse reaction, which our system could indirectly help predict and prevent. Our study illustrates the role machine learning may take in providing guidance in setting the starting dose for drugs associated with response variability.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N39df3503318f4089bad65ff874a4c9f6
39 Nb153f468830444599d31162f46b62be2
40 sg:journal.1045337
41 schema:name Predicting the need for a reduced drug dose, at first prescription
42 schema:pagination 15558
43 schema:productId N74cc89beb9154232aff8baae0d0b84ad
44 N7f917d78f96f40d5a49f36d06ecc79b7
45 N9588afaeadf148b1ae15735f22c58589
46 Nae0c104a0d77499a9fcc49f5a9be0115
47 Nba29dc6b546045efbb95a6a14d251088
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107670634
49 https://doi.org/10.1038/s41598-018-33980-0
50 schema:sdDatePublished 2019-04-10T17:40
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Nbe92cef70208419289d4da09c21a8593
53 schema:url https://www.nature.com/articles/s41598-018-33980-0
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N39df3503318f4089bad65ff874a4c9f6 schema:issueNumber 1
58 rdf:type schema:PublicationIssue
59 N60807b659f1c4db2ab90ff9ee43ec1e5 rdf:first sg:person.015565664351.55
60 rdf:rest N963e7480bab74469898a4dea007ffc14
61 N74cc89beb9154232aff8baae0d0b84ad schema:name dimensions_id
62 schema:value pub.1107670634
63 rdf:type schema:PropertyValue
64 N7f917d78f96f40d5a49f36d06ecc79b7 schema:name doi
65 schema:value 10.1038/s41598-018-33980-0
66 rdf:type schema:PropertyValue
67 N8ed69bfee13d4c18a256a4a575b6578f rdf:first sg:person.01222343441.55
68 rdf:rest Na829b1b1443a47b4bee39363a3280184
69 N9588afaeadf148b1ae15735f22c58589 schema:name readcube_id
70 schema:value 90696b79f5afe7c436b79e2a9f266b9a66e3a9fa830b1d39b6dc1c171e41b98d
71 rdf:type schema:PropertyValue
72 N963e7480bab74469898a4dea007ffc14 rdf:first sg:person.0660055404.34
73 rdf:rest Nb3049512816740ac9cbfab697c9abf4e
74 Na829b1b1443a47b4bee39363a3280184 rdf:first sg:person.016713300752.98
75 rdf:rest Nf2459265afcb4e5cb45132221049e7a1
76 Nae0c104a0d77499a9fcc49f5a9be0115 schema:name nlm_unique_id
77 schema:value 101563288
78 rdf:type schema:PropertyValue
79 Nb153f468830444599d31162f46b62be2 schema:volumeNumber 8
80 rdf:type schema:PublicationVolume
81 Nb3049512816740ac9cbfab697c9abf4e rdf:first sg:person.01324655201.14
82 rdf:rest rdf:nil
83 Nba29dc6b546045efbb95a6a14d251088 schema:name pubmed_id
84 schema:value 30349060
85 rdf:type schema:PropertyValue
86 Nbe92cef70208419289d4da09c21a8593 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nf2459265afcb4e5cb45132221049e7a1 rdf:first sg:person.01077545745.88
89 rdf:rest N60807b659f1c4db2ab90ff9ee43ec1e5
90 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
91 schema:name Medical and Health Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:1115 schema:inDefinedTermSet anzsrc-for:
94 schema:name Pharmacology and Pharmaceutical Sciences
95 rdf:type schema:DefinedTerm
96 sg:grant.2521690 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-33980-0
97 rdf:type schema:MonetaryGrant
98 sg:grant.2545657 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-33980-0
99 rdf:type schema:MonetaryGrant
100 sg:grant.6417188 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-33980-0
101 rdf:type schema:MonetaryGrant
102 sg:journal.1045337 schema:issn 2045-2322
103 schema:name Scientific Reports
104 rdf:type schema:Periodical
105 sg:person.01077545745.88 schema:affiliation https://www.grid.ac/institutes/grid.410527.5
106 schema:familyName Wack
107 schema:givenName Maxime
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077545745.88
109 rdf:type schema:Person
110 sg:person.01222343441.55 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
111 schema:familyName Coulet
112 schema:givenName Adrien
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222343441.55
114 rdf:type schema:Person
115 sg:person.01324655201.14 schema:affiliation https://www.grid.ac/institutes/grid.5012.6
116 schema:familyName Dumontier
117 schema:givenName Michel
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324655201.14
119 rdf:type schema:Person
120 sg:person.015565664351.55 schema:affiliation https://www.grid.ac/institutes/grid.410527.5
121 schema:familyName Chawki
122 schema:givenName Mohammad B.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015565664351.55
124 rdf:type schema:Person
125 sg:person.016713300752.98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
126 schema:familyName Shah
127 schema:givenName Nigam H.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016713300752.98
129 rdf:type schema:Person
130 sg:person.0660055404.34 schema:affiliation https://www.grid.ac/institutes/grid.410527.5
131 schema:familyName Jay
132 schema:givenName Nicolas
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660055404.34
134 rdf:type schema:Person
135 sg:pub.10.1038/clpt.2011.221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046856322
136 https://doi.org/10.1038/clpt.2011.221
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/clpt.2013.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034725967
139 https://doi.org/10.1038/clpt.2013.47
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nbt.2757 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041461250
142 https://doi.org/10.1038/nbt.2757
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nrg3208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011498059
145 https://doi.org/10.1038/nrg3208
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep26094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013280079
148 https://doi.org/10.1038/srep26094
149 rdf:type schema:CreativeWork
150 sg:pub.10.1186/1472-6963-11-134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023705655
151 https://doi.org/10.1186/1472-6963-11-134
152 rdf:type schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1075044377 schema:CreativeWork
154 https://app.dimensions.ai/details/publication/pub.1078138788 schema:CreativeWork
155 https://doi.org/10.1002/cfg.255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034461940
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/cpt.1035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100684653
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/cpt.1048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101124351
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/cpt.659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083737109
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/cpt.951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092935026
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/pds.1984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014092449
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.jbi.2011.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013606705
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jbi.2015.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034988404
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1056/nejmsb1503104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028678434
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1093/bioinformatics/bti565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050298763
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1093/bioinformatics/btl140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033741877
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1097/fpc.0b013e32834e1641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060340998
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1111/bcp.12234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041758926
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/scitranslmed.3003377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028652785
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1161/circgenetics.113.000106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035750901
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1371/journal.pcbi.1003405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024215768
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1371/journal.pone.0164972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028974721
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1377/hlthaff.26.2.w181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040516613
190 rdf:type schema:CreativeWork
191 https://doi.org/10.2174/1389200023337054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069175364
192 rdf:type schema:CreativeWork
193 https://doi.org/10.2217/pgs.11.164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024279758
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
196 schema:name Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA
197 Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
198 rdf:type schema:Organization
199 https://www.grid.ac/institutes/grid.410527.5 schema:alternateName Centre Hospitalier Universitaire de Nancy
200 schema:name Service d’Evaluation et d’Information Médicales, University Hospital of Nancy (CHRU), Nancy, France
201 Université de Lorraine, CNRS, Inria, LORIA, 54000, Nancy, France
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.5012.6 schema:alternateName Maastricht University
204 schema:name Institute of Data Science, Maastricht University, Maastricht, Netherlands
205 Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA
206 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...