SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-19

AUTHORS

Chi-Chang Chang, Chi-Hua Tung, Chi-Wei Chen, Chin-Hau Tu, Yen-Wei Chu

ABSTRACT

Most modern tools used to predict sites of small ubiquitin-like modifier (SUMO) binding (referred to as SUMOylation) use algorithms, chemical features of the protein, and consensus motifs. However, these tools rarely consider the influence of post-translational modification (PTM) information for other sites within the same protein on the accuracy of prediction results. This study applied the Random Forest machine learning method, as well as motif screening models and a feature selection combination mechanism, to develop a SUMOylation prediction system, referred to as SUMOgo. With regard to prediction method, PTM sites were coded as new functional features in addition to structural features, such as sequence-based binary coding, encoded chemical features of proteins, and encoded secondary structure information that is important for PTM. Twenty cycles of prediction were conducted with a 1:1 combination of positive test data and random negative data. Matthew's correlation coefficient of SUMOgo reached 0.511, which is higher than that of current commonly used tools. This study further verified the important role of PTM in SUMOgo and includes a case study on CREB binding protein (CREBBP). The website for the final tool is http://predictor.nchu.edu.tw/SUMOgo . More... »

PAGES

15512

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-33951-5

DOI

http://dx.doi.org/10.1038/s41598-018-33951-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107650295

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30341374


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Consensus Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Databases, Protein", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lysine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Processing, Post-Translational", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Small Ubiquitin-Related Modifier Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sumoylation", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IT Office, Chung Shan Medical University Hospital, Taichung, Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411645.3", 
          "name": [
            "School of Medical Informatics, Chung-Shan Medical University, Taichung, Taiwan", 
            "IT Office, Chung Shan Medical University Hospital, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chang", 
        "givenName": "Chi-Chang", 
        "id": "sg:person.0765276415.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765276415.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioinformatics, Chung-Hua University, Rm. S116, 707, Sec. 2, WuFu Rd., Hsinchu, 30012 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.411655.2", 
          "name": [
            "Department of Bioinformatics, Chung-Hua University, Rm. S116, 707, Sec. 2, WuFu Rd., Hsinchu, 30012 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tung", 
        "givenName": "Chi-Hua", 
        "id": "sg:person.016373306605.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373306605.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260542.7", 
          "name": [
            "Department of Computer Science and Engineering, National Chung-Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan", 
            "Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Chi-Wei", 
        "id": "sg:person.0740621723.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740621723.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260542.7", 
          "name": [
            "Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tu", 
        "givenName": "Chin-Hau", 
        "id": "sg:person.016027546300.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027546300.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Biotechnology Center, Agricultural Biotechnology Center, Institute of Molecular Biology, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan", 
          "id": "http://www.grid.ac/institutes/grid.260542.7", 
          "name": [
            "Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan", 
            "Biotechnology Center, Agricultural Biotechnology Center, Institute of Molecular Biology, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chu", 
        "givenName": "Yen-Wei", 
        "id": "sg:person.0672506523.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672506523.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/365855a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012014177", 
          "https://doi.org/10.1038/365855a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020568270", 
          "https://doi.org/10.1186/1471-2105-9-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-011-1100-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001680486", 
          "https://doi.org/10.1007/s00726-011-1100-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-s9-s18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032328912", 
          "https://doi.org/10.1186/1471-2164-15-s9-s18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-540-34594-7_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027873415", 
          "https://doi.org/10.1007/978-3-540-34594-7_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00894-001-0058-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027610651", 
          "https://doi.org/10.1007/s00894-001-0058-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35056591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049389948", 
          "https://doi.org/10.1038/35056591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12017-013-8257-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047327179", 
          "https://doi.org/10.1007/s12017-013-8257-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-009-9149-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039775062", 
          "https://doi.org/10.1007/s11030-009-9149-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00018-007-7137-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052586628", 
          "https://doi.org/10.1007/s00018-007-7137-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015025015", 
          "https://doi.org/10.1038/nrm2293"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-19", 
    "datePublishedReg": "2018-10-19", 
    "description": "Most modern tools used to predict sites of small ubiquitin-like modifier (SUMO) binding (referred to as SUMOylation) use algorithms, chemical features of the protein, and consensus motifs. However, these tools rarely consider the influence of post-translational modification (PTM) information for other sites within the same protein on the accuracy of prediction results. This study applied the Random Forest machine learning method, as well as motif screening models and a feature selection combination mechanism, to develop a SUMOylation prediction system, referred to as SUMOgo. With regard to prediction method, PTM sites were coded as new functional features in addition to structural features, such as sequence-based binary coding, encoded chemical features of proteins, and encoded secondary structure information that is important for PTM. Twenty cycles of prediction were conducted with a 1:1 combination of positive test data and random negative data. Matthew's correlation coefficient of SUMOgo reached 0.511, which is higher than that of current commonly used tools. This study further verified the important role of PTM in SUMOgo and includes a case study on CREB binding protein (CREBBP). The website for the final tool is http://predictor.nchu.edu.tw/SUMOgo .", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-33951-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "small ubiquitin-like modifier", 
      "final tool", 
      "correlation coefficient", 
      "Most modern tools", 
      "ubiquitin-like modifier", 
      "protein", 
      "study", 
      "functional features", 
      "important role", 
      "screening model", 
      "post-translational modifications", 
      "CREB", 
      "sites", 
      "features", 
      "same protein", 
      "machine learning methods", 
      "data", 
      "prediction method", 
      "role", 
      "sumoylation sites", 
      "effect", 
      "modern tools", 
      "tool", 
      "prediction results", 
      "mechanism", 
      "regard", 
      "consensus motif", 
      "information", 
      "prediction system", 
      "addition", 
      "binary coding", 
      "combination", 
      "negative data", 
      "lysine", 
      "modifiers", 
      "learning method", 
      "model", 
      "structure information", 
      "PTM", 
      "prediction", 
      "algorithm", 
      "results", 
      "method", 
      "PTM sites", 
      "chemical features", 
      "cycle", 
      "test data", 
      "modification", 
      "post-translational modifications information", 
      "accuracy", 
      "random forest machine learning method", 
      "coefficient", 
      "websites", 
      "motif", 
      "influence", 
      "modification information", 
      "system", 
      "case study", 
      "combination mechanism", 
      "structural features", 
      "secondary structure information", 
      "Matthews correlation coefficient", 
      "coding", 
      "new functional features", 
      "Forest machine learning method", 
      "feature selection combination mechanism", 
      "selection combination mechanism", 
      "SUMOylation prediction system", 
      "SUMOgo", 
      "sequence-based binary coding", 
      "cycles of prediction", 
      "positive test data", 
      "random negative data", 
      "motif screening models"
    ], 
    "name": "SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications", 
    "pagination": "15512", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107650295"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-33951-5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30341374"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-33951-5", 
      "https://app.dimensions.ai/details/publication/pub.1107650295"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_774.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-33951-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33951-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33951-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33951-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33951-5'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      22 PREDICATES      121 URIs      102 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-33951-5 schema:about N034c4fae58424c4187175a0990704502
2 N1c14248929304be7a774d9e31fe11a13
3 N58f220965abe44daba563b3bece607cd
4 N5dcaf7a547f74c2c9498f8e7a420435c
5 N603d97f748784dc1a424fd3355b30197
6 N72bbb614716242c99626f50b89e2a490
7 N8785cda78bbe4af08a8b48919db6732f
8 Nb33532fce4cf4002a51ee873554a39e0
9 Necdd76f4e9cd4b4ead260184e2301aff
10 Nf583133313194cb1b2ec525ed60c04ca
11 anzsrc-for:11
12 anzsrc-for:1102
13 schema:author Nfce6518e182b45679be9cb6756922e5c
14 schema:citation sg:pub.10.1007/978-3-540-34594-7_4
15 sg:pub.10.1007/s00018-007-7137-4
16 sg:pub.10.1007/s00726-011-1100-2
17 sg:pub.10.1007/s00894-001-0058-5
18 sg:pub.10.1007/s11030-009-9149-5
19 sg:pub.10.1007/s12017-013-8257-7
20 sg:pub.10.1038/35056591
21 sg:pub.10.1038/365855a0
22 sg:pub.10.1038/nrm2293
23 sg:pub.10.1186/1471-2105-9-8
24 sg:pub.10.1186/1471-2164-15-s9-s18
25 schema:datePublished 2018-10-19
26 schema:datePublishedReg 2018-10-19
27 schema:description Most modern tools used to predict sites of small ubiquitin-like modifier (SUMO) binding (referred to as SUMOylation) use algorithms, chemical features of the protein, and consensus motifs. However, these tools rarely consider the influence of post-translational modification (PTM) information for other sites within the same protein on the accuracy of prediction results. This study applied the Random Forest machine learning method, as well as motif screening models and a feature selection combination mechanism, to develop a SUMOylation prediction system, referred to as SUMOgo. With regard to prediction method, PTM sites were coded as new functional features in addition to structural features, such as sequence-based binary coding, encoded chemical features of proteins, and encoded secondary structure information that is important for PTM. Twenty cycles of prediction were conducted with a 1:1 combination of positive test data and random negative data. Matthew's correlation coefficient of SUMOgo reached 0.511, which is higher than that of current commonly used tools. This study further verified the important role of PTM in SUMOgo and includes a case study on CREB binding protein (CREBBP). The website for the final tool is http://predictor.nchu.edu.tw/SUMOgo .
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf Nd89132d6ca344504bfbde115b3fd25a3
32 Nf94a0c3a934548c281e59e7e383af337
33 sg:journal.1045337
34 schema:keywords CREB
35 Forest machine learning method
36 Matthews correlation coefficient
37 Most modern tools
38 PTM
39 PTM sites
40 SUMOgo
41 SUMOylation prediction system
42 accuracy
43 addition
44 algorithm
45 binary coding
46 case study
47 chemical features
48 coding
49 coefficient
50 combination
51 combination mechanism
52 consensus motif
53 correlation coefficient
54 cycle
55 cycles of prediction
56 data
57 effect
58 feature selection combination mechanism
59 features
60 final tool
61 functional features
62 important role
63 influence
64 information
65 learning method
66 lysine
67 machine learning methods
68 mechanism
69 method
70 model
71 modern tools
72 modification
73 modification information
74 modifiers
75 motif
76 motif screening models
77 negative data
78 new functional features
79 positive test data
80 post-translational modifications
81 post-translational modifications information
82 prediction
83 prediction method
84 prediction results
85 prediction system
86 protein
87 random forest machine learning method
88 random negative data
89 regard
90 results
91 role
92 same protein
93 screening model
94 secondary structure information
95 selection combination mechanism
96 sequence-based binary coding
97 sites
98 small ubiquitin-like modifier
99 structural features
100 structure information
101 study
102 sumoylation sites
103 system
104 test data
105 tool
106 ubiquitin-like modifier
107 websites
108 schema:name SUMOgo: Prediction of sumoylation sites on lysines by motif screening models and the effects of various post-translational modifications
109 schema:pagination 15512
110 schema:productId N1b16c9a0aba1419cb7f0700f5e37975b
111 N201438f24ae4422cbadb25ff64a94de5
112 N9474aeb8acf14d3395e984fc3d20d947
113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107650295
114 https://doi.org/10.1038/s41598-018-33951-5
115 schema:sdDatePublished 2021-12-01T19:42
116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
117 schema:sdPublisher Nbd2646bbe5e74e0db07ce83591cb087d
118 schema:url https://doi.org/10.1038/s41598-018-33951-5
119 sgo:license sg:explorer/license/
120 sgo:sdDataset articles
121 rdf:type schema:ScholarlyArticle
122 N034c4fae58424c4187175a0990704502 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name ROC Curve
124 rdf:type schema:DefinedTerm
125 N0a0dcfe4a19e464d859e9a0c3677d2fd rdf:first sg:person.016027546300.03
126 rdf:rest N132a5141ef414fccb762c805ac9e0fdc
127 N132a5141ef414fccb762c805ac9e0fdc rdf:first sg:person.0672506523.11
128 rdf:rest rdf:nil
129 N1b16c9a0aba1419cb7f0700f5e37975b schema:name pubmed_id
130 schema:value 30341374
131 rdf:type schema:PropertyValue
132 N1c14248929304be7a774d9e31fe11a13 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Computational Biology
134 rdf:type schema:DefinedTerm
135 N201438f24ae4422cbadb25ff64a94de5 schema:name doi
136 schema:value 10.1038/s41598-018-33951-5
137 rdf:type schema:PropertyValue
138 N58f220965abe44daba563b3bece607cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Consensus Sequence
140 rdf:type schema:DefinedTerm
141 N5dcaf7a547f74c2c9498f8e7a420435c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Amino Acid Motifs
143 rdf:type schema:DefinedTerm
144 N603d97f748784dc1a424fd3355b30197 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Lysine
146 rdf:type schema:DefinedTerm
147 N626e058cd6b5496f92c982ed452e6e7d rdf:first sg:person.016373306605.41
148 rdf:rest Ne7b547547adf47fbbf5d57c3ba6096f2
149 N72bbb614716242c99626f50b89e2a490 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Small Ubiquitin-Related Modifier Proteins
151 rdf:type schema:DefinedTerm
152 N8785cda78bbe4af08a8b48919db6732f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Databases, Protein
154 rdf:type schema:DefinedTerm
155 N9474aeb8acf14d3395e984fc3d20d947 schema:name dimensions_id
156 schema:value pub.1107650295
157 rdf:type schema:PropertyValue
158 Nb33532fce4cf4002a51ee873554a39e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Sumoylation
160 rdf:type schema:DefinedTerm
161 Nbd2646bbe5e74e0db07ce83591cb087d schema:name Springer Nature - SN SciGraph project
162 rdf:type schema:Organization
163 Nd89132d6ca344504bfbde115b3fd25a3 schema:volumeNumber 8
164 rdf:type schema:PublicationVolume
165 Ne7b547547adf47fbbf5d57c3ba6096f2 rdf:first sg:person.0740621723.87
166 rdf:rest N0a0dcfe4a19e464d859e9a0c3677d2fd
167 Necdd76f4e9cd4b4ead260184e2301aff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Algorithms
169 rdf:type schema:DefinedTerm
170 Nf583133313194cb1b2ec525ed60c04ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Protein Processing, Post-Translational
172 rdf:type schema:DefinedTerm
173 Nf94a0c3a934548c281e59e7e383af337 schema:issueNumber 1
174 rdf:type schema:PublicationIssue
175 Nfce6518e182b45679be9cb6756922e5c rdf:first sg:person.0765276415.17
176 rdf:rest N626e058cd6b5496f92c982ed452e6e7d
177 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
178 schema:name Medical and Health Sciences
179 rdf:type schema:DefinedTerm
180 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
181 schema:name Cardiorespiratory Medicine and Haematology
182 rdf:type schema:DefinedTerm
183 sg:journal.1045337 schema:issn 2045-2322
184 schema:name Scientific Reports
185 schema:publisher Springer Nature
186 rdf:type schema:Periodical
187 sg:person.016027546300.03 schema:affiliation grid-institutes:grid.260542.7
188 schema:familyName Tu
189 schema:givenName Chin-Hau
190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016027546300.03
191 rdf:type schema:Person
192 sg:person.016373306605.41 schema:affiliation grid-institutes:grid.411655.2
193 schema:familyName Tung
194 schema:givenName Chi-Hua
195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016373306605.41
196 rdf:type schema:Person
197 sg:person.0672506523.11 schema:affiliation grid-institutes:grid.260542.7
198 schema:familyName Chu
199 schema:givenName Yen-Wei
200 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0672506523.11
201 rdf:type schema:Person
202 sg:person.0740621723.87 schema:affiliation grid-institutes:grid.260542.7
203 schema:familyName Chen
204 schema:givenName Chi-Wei
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0740621723.87
206 rdf:type schema:Person
207 sg:person.0765276415.17 schema:affiliation grid-institutes:grid.411645.3
208 schema:familyName Chang
209 schema:givenName Chi-Chang
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765276415.17
211 rdf:type schema:Person
212 sg:pub.10.1007/978-3-540-34594-7_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027873415
213 https://doi.org/10.1007/978-3-540-34594-7_4
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00018-007-7137-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052586628
216 https://doi.org/10.1007/s00018-007-7137-4
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s00726-011-1100-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001680486
219 https://doi.org/10.1007/s00726-011-1100-2
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s00894-001-0058-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027610651
222 https://doi.org/10.1007/s00894-001-0058-5
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s11030-009-9149-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039775062
225 https://doi.org/10.1007/s11030-009-9149-5
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s12017-013-8257-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047327179
228 https://doi.org/10.1007/s12017-013-8257-7
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/35056591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049389948
231 https://doi.org/10.1038/35056591
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/365855a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012014177
234 https://doi.org/10.1038/365855a0
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nrm2293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015025015
237 https://doi.org/10.1038/nrm2293
238 rdf:type schema:CreativeWork
239 sg:pub.10.1186/1471-2105-9-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020568270
240 https://doi.org/10.1186/1471-2105-9-8
241 rdf:type schema:CreativeWork
242 sg:pub.10.1186/1471-2164-15-s9-s18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032328912
243 https://doi.org/10.1186/1471-2164-15-s9-s18
244 rdf:type schema:CreativeWork
245 grid-institutes:grid.260542.7 schema:alternateName Biotechnology Center, Agricultural Biotechnology Center, Institute of Molecular Biology, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan
246 Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan
247 schema:name Biotechnology Center, Agricultural Biotechnology Center, Institute of Molecular Biology, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan
248 Department of Computer Science and Engineering, National Chung-Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan
249 Institute of Genomics and Bioinformatics, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung, 402 Taiwan
250 rdf:type schema:Organization
251 grid-institutes:grid.411645.3 schema:alternateName IT Office, Chung Shan Medical University Hospital, Taichung, Taiwan
252 schema:name IT Office, Chung Shan Medical University Hospital, Taichung, Taiwan
253 School of Medical Informatics, Chung-Shan Medical University, Taichung, Taiwan
254 rdf:type schema:Organization
255 grid-institutes:grid.411655.2 schema:alternateName Department of Bioinformatics, Chung-Hua University, Rm. S116, 707, Sec. 2, WuFu Rd., Hsinchu, 30012 Taiwan
256 schema:name Department of Bioinformatics, Chung-Hua University, Rm. S116, 707, Sec. 2, WuFu Rd., Hsinchu, 30012 Taiwan
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...