Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-31

AUTHORS

Christian Sailer, Alicja Babst-Kostecka, Martin C. Fischer, Stefan Zoller, Alex Widmer, Pierre Vollenweider, Felix Gugerli, Christian Rellstab

ABSTRACT

When plants adapt to local environments, strong signatures of selection are expected in the genome, particularly in high-stress environments such as trace metal element enriched (metalliferous) soils. Using Arabidopsis halleri, a model species for metal homeostasis and adaptation to extreme environments, we identifid genes, gene variants, and pathways that are associated with soil properties and may thus contribute to adaptation to high concentrations of trace metal elements. We analysed whole-genome Pool-seq data from two metallicolous (from metalliferous soils) and two non-metallicolous populations (in total 119 individuals) and associated allele frequencies of the identified single-nucleotide polymorphisms (SNPs) with soil variables measured on site. Additionally, we accounted for polygenic adaptation by searching for gene pathways showing enrichment of signatures of selection. Out of >2.5 million SNPs, we identified 57 SNPs in 19 genes that were significantly associated with soil variables and are members of three enriched pathways. At least three of these candidate genes and pathways are involved in transmembrane transport and/or associated with responses to various stresses such as oxidative stress. We conclude that both allocation and detoxification processes play a crucial role in A. halleri for coping with these unfavourable conditions. More... »

PAGES

16085

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-33938-2

DOI

http://dx.doi.org/10.1038/s41598-018-33938-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107849777

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30382172


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adaptation, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Membrane", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Regulation, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene-Environment Interaction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Plant", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Plant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polymorphism, Single Nucleotide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Selection, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Soil", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stress, Physiological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Trace Elements", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "ETH Z\u00fcrich, Institute of Integrative Biology, 8092, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland", 
            "ETH Z\u00fcrich, Institute of Integrative Biology, 8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sailer", 
        "givenName": "Christian", 
        "id": "sg:person.0700262264.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700262264.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "W. Szafer Institute of Botany, Polish Academy of Sciences, 31512, Krakow, Poland", 
          "id": "http://www.grid.ac/institutes/grid.439020.c", 
          "name": [
            "W. Szafer Institute of Botany, Polish Academy of Sciences, 31512, Krakow, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Babst-Kostecka", 
        "givenName": "Alicja", 
        "id": "sg:person.0653322405.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653322405.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ETH Z\u00fcrich, Institute of Integrative Biology, 8092, Zu\u0308rich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Institute of Integrative Biology, 8092, Zu\u0308rich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fischer", 
        "givenName": "Martin C.", 
        "id": "sg:person.01372016165.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372016165.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ETH Z\u00fcrich, Genetic Diversity Centre, 8092, Zu\u0308rich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Genetic Diversity Centre, 8092, Zu\u0308rich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoller", 
        "givenName": "Stefan", 
        "id": "sg:person.01154110217.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110217.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ETH Z\u00fcrich, Institute of Integrative Biology, 8092, Zu\u0308rich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "ETH Z\u00fcrich, Institute of Integrative Biology, 8092, Zu\u0308rich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Widmer", 
        "givenName": "Alex", 
        "id": "sg:person.01345765141.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345765141.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419754.a", 
          "name": [
            "WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vollenweider", 
        "givenName": "Pierre", 
        "id": "sg:person.01141424723.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141424723.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419754.a", 
          "name": [
            "WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gugerli", 
        "givenName": "Felix", 
        "id": "sg:person.0610705622.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610705622.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.419754.a", 
          "name": [
            "WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rellstab", 
        "givenName": "Christian", 
        "id": "sg:person.01244650361.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244650361.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-07743-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000557880", 
          "https://doi.org/10.1007/978-3-662-07743-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045018123", 
          "https://doi.org/10.1038/nrg3803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00425-008-0690-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048161858", 
          "https://doi.org/10.1007/s00425-008-0690-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005182849", 
          "https://doi.org/10.1038/ng.515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-016-3459-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051740909", 
          "https://doi.org/10.1186/s12864-016-3459-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-21706-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035613449", 
          "https://doi.org/10.1007/978-0-387-21706-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10-31", 
    "datePublishedReg": "2018-10-31", 
    "description": "When plants adapt to local environments, strong signatures of selection are expected in the genome, particularly in high-stress environments such as trace metal element enriched (metalliferous) soils. Using Arabidopsis halleri, a model species for metal homeostasis and adaptation to extreme environments, we identifid genes, gene variants, and pathways that are associated with soil properties and may thus contribute to adaptation to high concentrations of trace metal elements. We analysed whole-genome Pool-seq data from two metallicolous (from metalliferous soils) and two non-metallicolous populations (in total 119 individuals) and associated allele frequencies of the identified single-nucleotide polymorphisms (SNPs) with soil variables measured on site. Additionally, we accounted for polygenic adaptation by searching for gene pathways showing enrichment of signatures of selection. Out of >2.5 million SNPs, we identified 57 SNPs in 19 genes that were significantly associated with soil variables and are members of three enriched pathways. At least three of these candidate genes and pathways are involved in transmembrane transport and/or associated with responses to various stresses such as oxidative stress. We conclude that both allocation and detoxification processes play a crucial role in A. halleri for coping with these unfavourable conditions.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-33938-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.9181052", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "single nucleotide polymorphisms", 
      "transmembrane transport", 
      "adaptation of Arabidopsis", 
      "stress response genes", 
      "non-metallicolous populations", 
      "Pool-Seq data", 
      "enrichment of signatures", 
      "soil variables", 
      "polygenic adaptation", 
      "Arabidopsis halleri", 
      "A. halleri", 
      "model species", 
      "metalliferous soils", 
      "metal homeostasis", 
      "enriched pathways", 
      "response genes", 
      "gene pathways", 
      "candidate genes", 
      "genes", 
      "trace metal elements", 
      "extreme environments", 
      "halleri", 
      "strong signature", 
      "detoxification process", 
      "unfavourable conditions", 
      "pathway", 
      "allele frequencies", 
      "oxidative stress", 
      "gene variants", 
      "high-stress environments", 
      "adaptation", 
      "crucial role", 
      "Arabidopsis", 
      "genome", 
      "important role", 
      "local environment", 
      "species", 
      "plants", 
      "homeostasis", 
      "role", 
      "soil properties", 
      "stress", 
      "selection", 
      "polymorphism", 
      "high concentrations", 
      "signatures", 
      "transport", 
      "enrichment", 
      "variants", 
      "members", 
      "soil", 
      "sites", 
      "environment", 
      "population", 
      "elements", 
      "response", 
      "concentration", 
      "process", 
      "conditions", 
      "metal elements", 
      "data", 
      "allocation", 
      "frequency", 
      "properties", 
      "variables"
    ], 
    "name": "Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils", 
    "pagination": "16085", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107849777"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-33938-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30382172"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-33938-2", 
      "https://app.dimensions.ai/details/publication/pub.1107849777"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_760.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-33938-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33938-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33938-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33938-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33938-2'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      22 PREDICATES      112 URIs      98 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-33938-2 schema:about N0e1efc795b524e4d8d83a3109ae22271
2 N0e8d16d379ad44fc8eb13dae457e2833
3 N16c737506a434946b8c4bc2e4d72fa84
4 N2148cfb96fd14ebcb8cd5d895e102add
5 N5eccd77d95304a2ba0d06c9be047d65d
6 N663a57ba94c3496597dc68e203323833
7 N7b8946209a2b446c9e85856648a0d085
8 N9b86ff20cf04401fa22da2e43e5bda65
9 Nb216c5378d8d4e08a491e79623afd13f
10 Nc81b90e5b6d84d738ba879f03ac8ae46
11 Nc9945bd8a7284352984b5844f9eebabd
12 Ne06f5c34ac7949f5aa473738e498067c
13 Ne2bc908ea857441db96f5ecb876f4dca
14 Ne438c9b5efaf40eaae24fb7b89a116f6
15 Nfa796a0126484a4db047b121827f4b99
16 anzsrc-for:06
17 anzsrc-for:0604
18 schema:author Nc337959044e0480d9a220050609dbb0c
19 schema:citation sg:pub.10.1007/978-0-387-21706-2
20 sg:pub.10.1007/978-3-662-07743-6_1
21 sg:pub.10.1007/s00425-008-0690-8
22 sg:pub.10.1038/ng.515
23 sg:pub.10.1038/nrg3803
24 sg:pub.10.1186/s12864-016-3459-7
25 schema:datePublished 2018-10-31
26 schema:datePublishedReg 2018-10-31
27 schema:description When plants adapt to local environments, strong signatures of selection are expected in the genome, particularly in high-stress environments such as trace metal element enriched (metalliferous) soils. Using Arabidopsis halleri, a model species for metal homeostasis and adaptation to extreme environments, we identifid genes, gene variants, and pathways that are associated with soil properties and may thus contribute to adaptation to high concentrations of trace metal elements. We analysed whole-genome Pool-seq data from two metallicolous (from metalliferous soils) and two non-metallicolous populations (in total 119 individuals) and associated allele frequencies of the identified single-nucleotide polymorphisms (SNPs) with soil variables measured on site. Additionally, we accounted for polygenic adaptation by searching for gene pathways showing enrichment of signatures of selection. Out of >2.5 million SNPs, we identified 57 SNPs in 19 genes that were significantly associated with soil variables and are members of three enriched pathways. At least three of these candidate genes and pathways are involved in transmembrane transport and/or associated with responses to various stresses such as oxidative stress. We conclude that both allocation and detoxification processes play a crucial role in A. halleri for coping with these unfavourable conditions.
28 schema:genre article
29 schema:inLanguage en
30 schema:isAccessibleForFree true
31 schema:isPartOf N47cf660380c34cd7b26314a127f88f20
32 N7b8a253cfafb4bde937fd389277f29e2
33 sg:journal.1045337
34 schema:keywords A. halleri
35 Arabidopsis
36 Arabidopsis halleri
37 Pool-Seq data
38 adaptation
39 adaptation of Arabidopsis
40 allele frequencies
41 allocation
42 candidate genes
43 concentration
44 conditions
45 crucial role
46 data
47 detoxification process
48 elements
49 enriched pathways
50 enrichment
51 enrichment of signatures
52 environment
53 extreme environments
54 frequency
55 gene pathways
56 gene variants
57 genes
58 genome
59 halleri
60 high concentrations
61 high-stress environments
62 homeostasis
63 important role
64 local environment
65 members
66 metal elements
67 metal homeostasis
68 metalliferous soils
69 model species
70 non-metallicolous populations
71 oxidative stress
72 pathway
73 plants
74 polygenic adaptation
75 polymorphism
76 population
77 process
78 properties
79 response
80 response genes
81 role
82 selection
83 signatures
84 single nucleotide polymorphisms
85 sites
86 soil
87 soil properties
88 soil variables
89 species
90 stress
91 stress response genes
92 strong signature
93 trace metal elements
94 transmembrane transport
95 transport
96 unfavourable conditions
97 variables
98 variants
99 schema:name Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils
100 schema:pagination 16085
101 schema:productId N50f7d9871601455ea1da90142f77a2df
102 N7174c373faec4205a4ddbf9b4a97c6cc
103 Nebd8ecc4954b46329cd87df8aff6a988
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107849777
105 https://doi.org/10.1038/s41598-018-33938-2
106 schema:sdDatePublished 2022-05-20T07:34
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher N28b62b02ec1f4c62b900dbbdc49b4a92
109 schema:url https://doi.org/10.1038/s41598-018-33938-2
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N0e1efc795b524e4d8d83a3109ae22271 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Gene Expression Profiling
115 rdf:type schema:DefinedTerm
116 N0e8d16d379ad44fc8eb13dae457e2833 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Adaptation, Physiological
118 rdf:type schema:DefinedTerm
119 N16c737506a434946b8c4bc2e4d72fa84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Cell Membrane
121 rdf:type schema:DefinedTerm
122 N2148cfb96fd14ebcb8cd5d895e102add schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Gene Expression Regulation, Plant
124 rdf:type schema:DefinedTerm
125 N245e8d6d33bc4dc7844eae5f2640c360 rdf:first sg:person.0653322405.81
126 rdf:rest N533d962ab37748748705aaaabcfbd73f
127 N28b62b02ec1f4c62b900dbbdc49b4a92 schema:name Springer Nature - SN SciGraph project
128 rdf:type schema:Organization
129 N47cf660380c34cd7b26314a127f88f20 schema:issueNumber 1
130 rdf:type schema:PublicationIssue
131 N50f7d9871601455ea1da90142f77a2df schema:name dimensions_id
132 schema:value pub.1107849777
133 rdf:type schema:PropertyValue
134 N520e1a201b644935a2a7e53c34d8ad77 rdf:first sg:person.01244650361.33
135 rdf:rest rdf:nil
136 N533d962ab37748748705aaaabcfbd73f rdf:first sg:person.01372016165.32
137 rdf:rest Na1320beff3ee477fb4f78a7327e229a6
138 N5eccd77d95304a2ba0d06c9be047d65d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Plant Proteins
140 rdf:type schema:DefinedTerm
141 N663a57ba94c3496597dc68e203323833 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Metals
143 rdf:type schema:DefinedTerm
144 N7174c373faec4205a4ddbf9b4a97c6cc schema:name doi
145 schema:value 10.1038/s41598-018-33938-2
146 rdf:type schema:PropertyValue
147 N7b8946209a2b446c9e85856648a0d085 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Soil
149 rdf:type schema:DefinedTerm
150 N7b8a253cfafb4bde937fd389277f29e2 schema:volumeNumber 8
151 rdf:type schema:PublicationVolume
152 N90b1dde7b39547a2b3e0bd3996633993 rdf:first sg:person.01345765141.18
153 rdf:rest Ncc25062fd5cb47a5ac754619f59199ed
154 N9b86ff20cf04401fa22da2e43e5bda65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Selection, Genetic
156 rdf:type schema:DefinedTerm
157 Na1320beff3ee477fb4f78a7327e229a6 rdf:first sg:person.01154110217.18
158 rdf:rest N90b1dde7b39547a2b3e0bd3996633993
159 Nb216c5378d8d4e08a491e79623afd13f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Arabidopsis
161 rdf:type schema:DefinedTerm
162 Nc337959044e0480d9a220050609dbb0c rdf:first sg:person.0700262264.71
163 rdf:rest N245e8d6d33bc4dc7844eae5f2640c360
164 Nc81b90e5b6d84d738ba879f03ac8ae46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Genome, Plant
166 rdf:type schema:DefinedTerm
167 Nc9945bd8a7284352984b5844f9eebabd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Trace Elements
169 rdf:type schema:DefinedTerm
170 Ncc25062fd5cb47a5ac754619f59199ed rdf:first sg:person.01141424723.14
171 rdf:rest Ne15801c47986428199830b367474ec87
172 Ne06f5c34ac7949f5aa473738e498067c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Genetics, Population
174 rdf:type schema:DefinedTerm
175 Ne15801c47986428199830b367474ec87 rdf:first sg:person.0610705622.24
176 rdf:rest N520e1a201b644935a2a7e53c34d8ad77
177 Ne2bc908ea857441db96f5ecb876f4dca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Stress, Physiological
179 rdf:type schema:DefinedTerm
180 Ne438c9b5efaf40eaae24fb7b89a116f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
181 schema:name Gene-Environment Interaction
182 rdf:type schema:DefinedTerm
183 Nebd8ecc4954b46329cd87df8aff6a988 schema:name pubmed_id
184 schema:value 30382172
185 rdf:type schema:PropertyValue
186 Nfa796a0126484a4db047b121827f4b99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Polymorphism, Single Nucleotide
188 rdf:type schema:DefinedTerm
189 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
190 schema:name Biological Sciences
191 rdf:type schema:DefinedTerm
192 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
193 schema:name Genetics
194 rdf:type schema:DefinedTerm
195 sg:grant.9181052 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-33938-2
196 rdf:type schema:MonetaryGrant
197 sg:journal.1045337 schema:issn 2045-2322
198 schema:name Scientific Reports
199 schema:publisher Springer Nature
200 rdf:type schema:Periodical
201 sg:person.01141424723.14 schema:affiliation grid-institutes:grid.419754.a
202 schema:familyName Vollenweider
203 schema:givenName Pierre
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01141424723.14
205 rdf:type schema:Person
206 sg:person.01154110217.18 schema:affiliation grid-institutes:grid.5801.c
207 schema:familyName Zoller
208 schema:givenName Stefan
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154110217.18
210 rdf:type schema:Person
211 sg:person.01244650361.33 schema:affiliation grid-institutes:grid.419754.a
212 schema:familyName Rellstab
213 schema:givenName Christian
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244650361.33
215 rdf:type schema:Person
216 sg:person.01345765141.18 schema:affiliation grid-institutes:grid.5801.c
217 schema:familyName Widmer
218 schema:givenName Alex
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345765141.18
220 rdf:type schema:Person
221 sg:person.01372016165.32 schema:affiliation grid-institutes:grid.5801.c
222 schema:familyName Fischer
223 schema:givenName Martin C.
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372016165.32
225 rdf:type schema:Person
226 sg:person.0610705622.24 schema:affiliation grid-institutes:grid.419754.a
227 schema:familyName Gugerli
228 schema:givenName Felix
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610705622.24
230 rdf:type schema:Person
231 sg:person.0653322405.81 schema:affiliation grid-institutes:grid.439020.c
232 schema:familyName Babst-Kostecka
233 schema:givenName Alicja
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653322405.81
235 rdf:type schema:Person
236 sg:person.0700262264.71 schema:affiliation grid-institutes:grid.5801.c
237 schema:familyName Sailer
238 schema:givenName Christian
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700262264.71
240 rdf:type schema:Person
241 sg:pub.10.1007/978-0-387-21706-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035613449
242 https://doi.org/10.1007/978-0-387-21706-2
243 rdf:type schema:CreativeWork
244 sg:pub.10.1007/978-3-662-07743-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000557880
245 https://doi.org/10.1007/978-3-662-07743-6_1
246 rdf:type schema:CreativeWork
247 sg:pub.10.1007/s00425-008-0690-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048161858
248 https://doi.org/10.1007/s00425-008-0690-8
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/ng.515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005182849
251 https://doi.org/10.1038/ng.515
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nrg3803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045018123
254 https://doi.org/10.1038/nrg3803
255 rdf:type schema:CreativeWork
256 sg:pub.10.1186/s12864-016-3459-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051740909
257 https://doi.org/10.1186/s12864-016-3459-7
258 rdf:type schema:CreativeWork
259 grid-institutes:grid.419754.a schema:alternateName WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland
260 schema:name WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland
261 rdf:type schema:Organization
262 grid-institutes:grid.439020.c schema:alternateName W. Szafer Institute of Botany, Polish Academy of Sciences, 31512, Krakow, Poland
263 schema:name W. Szafer Institute of Botany, Polish Academy of Sciences, 31512, Krakow, Poland
264 rdf:type schema:Organization
265 grid-institutes:grid.5801.c schema:alternateName ETH Zürich, Genetic Diversity Centre, 8092, Zürich, Switzerland
266 ETH Zürich, Institute of Integrative Biology, 8092, Zürich, Switzerland
267 ETH Zürich, Institute of Integrative Biology, 8092, Zürich, Switzerland
268 schema:name ETH Zürich, Genetic Diversity Centre, 8092, Zürich, Switzerland
269 ETH Zürich, Institute of Integrative Biology, 8092, Zürich, Switzerland
270 ETH Zürich, Institute of Integrative Biology, 8092, Zürich, Switzerland
271 WSL Swiss Federal Research Institute, 8903, Birmensdorf, Switzerland
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...