A comprehensive portrait of Y-STR diversity of Indian populations and comparison with 129 worldwide populations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Mugdha Singh, Anujit Sarkar, Madhusudan R. Nandineni

ABSTRACT

India, known for its rich cultural, linguistic and ethnic diversity, has attracted the attention of population geneticists to understand its genetic diversity employing autosomal, Y-chromosomal and mitochondrial DNA markers. Y-chromosomal short tandem repeats (Y-STRs) are useful in understanding population substructures and reveal the patrilineal affinities among populations. Previous studies on Indian populations based on Y-STR markers were either limited to restricted number of markers or focused on few selected populations. In this study we genotyped 407 unrelated male individuals from 12 states in India employing the suite of Y-STRs present in PowerPlex Y23 (Promega, Madison, WI, USA). These populations clustered genetically close to each other irrespective of their geographic co-ordinates and were characterized primarily by R1a, H and L haplogroups. Interestingly, comparison with 129 worldwide populations showed genetic affinity of the Indian populations with few populations from Europe and Levantine. This study presents the first pan-Indian landscape of 23 Y-STRs and serves as a useful resource for construction of an Indian Y-STR database. More... »

PAGES

15421

References to SciGraph publications

  • 2017-05. Y-chromosomal sequences of diverse Indian populations and the ancestry of the Andamanese in HUMAN GENETICS
  • 2008-04. Genetic landscape of the people of India: a canvas for disease gene exploration in JOURNAL OF GENETICS
  • 2006-12. Genetic affinities among the lower castes and tribal groups of India: inference from Y chromosome and mitochondrial DNA in BMC GENETICS
  • 2016-04. Analysis of genetic admixture in Uyghur using the 26 Y-STR loci system in SCIENTIFIC REPORTS
  • 2016-05. Dissecting the influence of Neolithic demic diffusion on Indian Y-chromosome pool through J2-M172 haplogroup in SCIENTIFIC REPORTS
  • 2017-01. Genetic portrait of Majhi tribe of Chhattisgarh, India based on 15 autosomal STRs and 23 Y-STRs in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2011-11. Comments on the article, “Software for Y Haplogroup Predictions, a Word of Caution” in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2009-09. Reconstructing Indian population history in NATURE
  • 2010-03. Traces of sub-Saharan and Middle Eastern lineages in Indian Muslim populations in EUROPEAN JOURNAL OF HUMAN GENETICS
  • 2010-12. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations in BMC GENETICS
  • 2001-11. Prehistoric human colonization of India in JOURNAL OF BIOSCIENCES
  • 2016-06. Charting the Y-chromosome ancestry of present-day Argentinean Mennonites in JOURNAL OF HUMAN GENETICS
  • 2010-09. Y-STR variation in Albanian populations: implications on the match probabilities and the genetic legacy of the minority claiming an Egyptian descent in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2017-07. Population genetic analyses and evaluation of 22 autosomal STRs in Indian populations in INTERNATIONAL JOURNAL OF LEGAL MEDICINE
  • 2017-05-30. Human Y-chromosome variation in the genome-sequencing era in NATURE REVIEWS GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-33714-2

    DOI

    http://dx.doi.org/10.1038/s41598-018-33714-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107590505

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30337554


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Manipal University", 
              "id": "https://www.grid.ac/institutes/grid.411639.8", 
              "name": [
                "Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Uppal, 500039, Hyderabad, Telangana State, India", 
                "Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Mugdha", 
            "id": "sg:person.013467372155.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013467372155.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for DNA Fingerprinting and Diagnostics", 
              "id": "https://www.grid.ac/institutes/grid.145749.a", 
              "name": [
                "Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Uppal, 500039, Hyderabad, Telangana State, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sarkar", 
            "givenName": "Anujit", 
            "id": "sg:person.01233701465.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233701465.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Centre for DNA Fingerprinting and Diagnostics", 
              "id": "https://www.grid.ac/institutes/grid.145749.a", 
              "name": [
                "Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Uppal, 500039, Hyderabad, Telangana State, India", 
                "Laboratory of DNA Fingerprinting Services, Centre for DNA Fingerprinting and Diagnostics, Uppal, 500039, Hyderabad, Telangana State, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nandineni", 
            "givenName": "Madhusudan R.", 
            "id": "sg:person.01352417510.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352417510.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.forsciint.2006.07.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001721600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep19998", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008058026", 
              "https://doi.org/10.1038/srep19998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2015.04.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011189061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/jhg.2016.3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011861465", 
              "https://doi.org/10.1038/jhg.2016.3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/16.3.1215", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012912024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2015.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013431985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep19157", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014932751", 
              "https://doi.org/10.1038/srep19157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0058633", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015861418"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1513197113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016268476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/oxfordjournals.molbev.a026036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018569508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0507714103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019817939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0050269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020035237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1755-0998.2010.02847.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020645983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.fsigen.2014.04.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022235423"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2004.01.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025930359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/bts460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026432648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2298/gensr1503901d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027263823"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-11-94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027835018", 
              "https://doi.org/10.1186/1471-2156-11-94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-010-0432-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032685463", 
              "https://doi.org/10.1007/s00414-010-0432-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-010-0432-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032685463", 
              "https://doi.org/10.1007/s00414-010-0432-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034218653", 
              "https://doi.org/10.1038/nature08365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034218653", 
              "https://doi.org/10.1038/nature08365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12041-008-0002-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034600932", 
              "https://doi.org/10.1007/s12041-008-0002-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cub.2009.11.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035342137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajhg.2013.07.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040890435"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-7-42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041196868", 
              "https://doi.org/10.1186/1471-2156-7-42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02704749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041719012", 
              "https://doi.org/10.1007/bf02704749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02704749", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041719012", 
              "https://doi.org/10.1007/bf02704749"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-010-0459-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042041199", 
              "https://doi.org/10.1007/s00414-010-0459-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1046/j.1365-294x.2002.01650.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042545303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7717/peerj.281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042956549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.7172008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049154127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1353/hub.2003.0006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049316621"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-016-1525-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051267540", 
              "https://doi.org/10.1007/s00414-016-1525-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-016-1525-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051267540", 
              "https://doi.org/10.1007/s00414-016-1525-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2005.01155.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052284706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1471-8286.2005.01155.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052284706"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0024282", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052430860"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-016-1421-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053009984", 
              "https://doi.org/10.1007/s00414-016-1421-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00414-016-1421-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053009984", 
              "https://doi.org/10.1007/s00414-016-1421-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ejhg.2009.168", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053244221", 
              "https://doi.org/10.1038/ejhg.2009.168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/499411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058782138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1127/0003-5548/2014/0368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062694319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-017-1800-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085207529", 
              "https://doi.org/10.1007/s00439-017-1800-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00439-017-1800-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085207529", 
              "https://doi.org/10.1007/s00439-017-1800-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg.2017.36", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085714886", 
              "https://doi.org/10.1038/nrg.2017.36"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fgene.2017.00121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091862180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/03014460.2017.1384508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091934701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/09723757.2008.11886023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092877572"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "India, known for its rich cultural, linguistic and ethnic diversity, has attracted the attention of population geneticists to understand its genetic diversity employing autosomal, Y-chromosomal and mitochondrial DNA markers. Y-chromosomal short tandem repeats (Y-STRs) are useful in understanding population substructures and reveal the patrilineal affinities among populations. Previous studies on Indian populations based on Y-STR markers were either limited to restricted number of markers or focused on few selected populations. In this study we genotyped 407 unrelated male individuals from 12 states in India employing the suite of Y-STRs present in PowerPlex Y23 (Promega, Madison, WI, USA). These populations clustered genetically close to each other irrespective of their geographic co-ordinates and were characterized primarily by R1a, H and L haplogroups. Interestingly, comparison with 129 worldwide populations showed genetic affinity of the Indian populations with few populations from Europe and Levantine. This study presents the first pan-Indian landscape of 23 Y-STRs and serves as a useful resource for construction of an Indian Y-STR database.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-33714-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "A comprehensive portrait of Y-STR diversity of Indian populations and comparison with 129 worldwide populations", 
        "pagination": "15421", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5a645ff9b3ab5d6b28a0d76900dc87207f157ebd512dfc6e6274eebbfc560464"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30337554"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-33714-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107590505"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-33714-2", 
          "https://app.dimensions.ai/details/publication/pub.1107590505"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000572.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-33714-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33714-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33714-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33714-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33714-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    228 TRIPLES      21 PREDICATES      71 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-33714-2 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N6191a15221c443e3b49d65fefe548a97
    4 schema:citation sg:pub.10.1007/bf02704749
    5 sg:pub.10.1007/s00414-010-0432-x
    6 sg:pub.10.1007/s00414-010-0459-z
    7 sg:pub.10.1007/s00414-016-1421-5
    8 sg:pub.10.1007/s00414-016-1525-y
    9 sg:pub.10.1007/s00439-017-1800-0
    10 sg:pub.10.1007/s12041-008-0002-x
    11 sg:pub.10.1038/ejhg.2009.168
    12 sg:pub.10.1038/jhg.2016.3
    13 sg:pub.10.1038/nature08365
    14 sg:pub.10.1038/nrg.2017.36
    15 sg:pub.10.1038/srep19157
    16 sg:pub.10.1038/srep19998
    17 sg:pub.10.1186/1471-2156-11-94
    18 sg:pub.10.1186/1471-2156-7-42
    19 https://doi.org/10.1016/j.ajhg.2013.07.006
    20 https://doi.org/10.1016/j.cub.2004.01.024
    21 https://doi.org/10.1016/j.cub.2009.11.053
    22 https://doi.org/10.1016/j.forsciint.2006.07.020
    23 https://doi.org/10.1016/j.fsigen.2014.04.008
    24 https://doi.org/10.1016/j.fsigen.2015.04.005
    25 https://doi.org/10.1016/j.fsigen.2015.07.006
    26 https://doi.org/10.1046/j.1365-294x.2002.01650.x
    27 https://doi.org/10.1073/pnas.0507714103
    28 https://doi.org/10.1073/pnas.1513197113
    29 https://doi.org/10.1080/03014460.2017.1384508
    30 https://doi.org/10.1080/09723757.2008.11886023
    31 https://doi.org/10.1086/499411
    32 https://doi.org/10.1093/bioinformatics/bts460
    33 https://doi.org/10.1093/nar/16.3.1215
    34 https://doi.org/10.1093/oxfordjournals.molbev.a026036
    35 https://doi.org/10.1101/gr.7172008
    36 https://doi.org/10.1111/j.1471-8286.2005.01155.x
    37 https://doi.org/10.1111/j.1755-0998.2010.02847.x
    38 https://doi.org/10.1127/0003-5548/2014/0368
    39 https://doi.org/10.1353/hub.2003.0006
    40 https://doi.org/10.1371/journal.pone.0024282
    41 https://doi.org/10.1371/journal.pone.0050269
    42 https://doi.org/10.1371/journal.pone.0058633
    43 https://doi.org/10.2298/gensr1503901d
    44 https://doi.org/10.3389/fgene.2017.00121
    45 https://doi.org/10.7717/peerj.281
    46 schema:datePublished 2018-12
    47 schema:datePublishedReg 2018-12-01
    48 schema:description India, known for its rich cultural, linguistic and ethnic diversity, has attracted the attention of population geneticists to understand its genetic diversity employing autosomal, Y-chromosomal and mitochondrial DNA markers. Y-chromosomal short tandem repeats (Y-STRs) are useful in understanding population substructures and reveal the patrilineal affinities among populations. Previous studies on Indian populations based on Y-STR markers were either limited to restricted number of markers or focused on few selected populations. In this study we genotyped 407 unrelated male individuals from 12 states in India employing the suite of Y-STRs present in PowerPlex Y23 (Promega, Madison, WI, USA). These populations clustered genetically close to each other irrespective of their geographic co-ordinates and were characterized primarily by R1a, H and L haplogroups. Interestingly, comparison with 129 worldwide populations showed genetic affinity of the Indian populations with few populations from Europe and Levantine. This study presents the first pan-Indian landscape of 23 Y-STRs and serves as a useful resource for construction of an Indian Y-STR database.
    49 schema:genre research_article
    50 schema:inLanguage en
    51 schema:isAccessibleForFree true
    52 schema:isPartOf Nc2470e15255a4640af2237a9b4223cde
    53 Nda43e9c9a0844a04b25cb4b89f0e257b
    54 sg:journal.1045337
    55 schema:name A comprehensive portrait of Y-STR diversity of Indian populations and comparison with 129 worldwide populations
    56 schema:pagination 15421
    57 schema:productId N09f23261667446e591877473aa2c3375
    58 N2aa9b557e049473e8c724202c416b8d4
    59 N7a973daf61b94ca88dd3b2880e561cf1
    60 Nb471a6019da140178c3cef7a08b412ab
    61 Ne38491378abd41848df6889874513bd6
    62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107590505
    63 https://doi.org/10.1038/s41598-018-33714-2
    64 schema:sdDatePublished 2019-04-10T23:35
    65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    66 schema:sdPublisher N029c7ec7495b47cdb4f55883c2a35e2a
    67 schema:url https://www.nature.com/articles/s41598-018-33714-2
    68 sgo:license sg:explorer/license/
    69 sgo:sdDataset articles
    70 rdf:type schema:ScholarlyArticle
    71 N029c7ec7495b47cdb4f55883c2a35e2a schema:name Springer Nature - SN SciGraph project
    72 rdf:type schema:Organization
    73 N09f23261667446e591877473aa2c3375 schema:name dimensions_id
    74 schema:value pub.1107590505
    75 rdf:type schema:PropertyValue
    76 N108b44d871ce48e2a5847160b1100ce2 rdf:first sg:person.01233701465.32
    77 rdf:rest N238463eec65145ee98bd71b29714a862
    78 N238463eec65145ee98bd71b29714a862 rdf:first sg:person.01352417510.97
    79 rdf:rest rdf:nil
    80 N2aa9b557e049473e8c724202c416b8d4 schema:name pubmed_id
    81 schema:value 30337554
    82 rdf:type schema:PropertyValue
    83 N6191a15221c443e3b49d65fefe548a97 rdf:first sg:person.013467372155.51
    84 rdf:rest N108b44d871ce48e2a5847160b1100ce2
    85 N7a973daf61b94ca88dd3b2880e561cf1 schema:name readcube_id
    86 schema:value 5a645ff9b3ab5d6b28a0d76900dc87207f157ebd512dfc6e6274eebbfc560464
    87 rdf:type schema:PropertyValue
    88 Nb471a6019da140178c3cef7a08b412ab schema:name nlm_unique_id
    89 schema:value 101563288
    90 rdf:type schema:PropertyValue
    91 Nc2470e15255a4640af2237a9b4223cde schema:volumeNumber 8
    92 rdf:type schema:PublicationVolume
    93 Nda43e9c9a0844a04b25cb4b89f0e257b schema:issueNumber 1
    94 rdf:type schema:PublicationIssue
    95 Ne38491378abd41848df6889874513bd6 schema:name doi
    96 schema:value 10.1038/s41598-018-33714-2
    97 rdf:type schema:PropertyValue
    98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Biological Sciences
    100 rdf:type schema:DefinedTerm
    101 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    102 schema:name Genetics
    103 rdf:type schema:DefinedTerm
    104 sg:journal.1045337 schema:issn 2045-2322
    105 schema:name Scientific Reports
    106 rdf:type schema:Periodical
    107 sg:person.01233701465.32 schema:affiliation https://www.grid.ac/institutes/grid.145749.a
    108 schema:familyName Sarkar
    109 schema:givenName Anujit
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233701465.32
    111 rdf:type schema:Person
    112 sg:person.013467372155.51 schema:affiliation https://www.grid.ac/institutes/grid.411639.8
    113 schema:familyName Singh
    114 schema:givenName Mugdha
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013467372155.51
    116 rdf:type schema:Person
    117 sg:person.01352417510.97 schema:affiliation https://www.grid.ac/institutes/grid.145749.a
    118 schema:familyName Nandineni
    119 schema:givenName Madhusudan R.
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352417510.97
    121 rdf:type schema:Person
    122 sg:pub.10.1007/bf02704749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041719012
    123 https://doi.org/10.1007/bf02704749
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/s00414-010-0432-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032685463
    126 https://doi.org/10.1007/s00414-010-0432-x
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s00414-010-0459-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1042041199
    129 https://doi.org/10.1007/s00414-010-0459-z
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s00414-016-1421-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053009984
    132 https://doi.org/10.1007/s00414-016-1421-5
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s00414-016-1525-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051267540
    135 https://doi.org/10.1007/s00414-016-1525-y
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s00439-017-1800-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085207529
    138 https://doi.org/10.1007/s00439-017-1800-0
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s12041-008-0002-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034600932
    141 https://doi.org/10.1007/s12041-008-0002-x
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1038/ejhg.2009.168 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053244221
    144 https://doi.org/10.1038/ejhg.2009.168
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/jhg.2016.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011861465
    147 https://doi.org/10.1038/jhg.2016.3
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/nature08365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034218653
    150 https://doi.org/10.1038/nature08365
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1038/nrg.2017.36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085714886
    153 https://doi.org/10.1038/nrg.2017.36
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1038/srep19157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014932751
    156 https://doi.org/10.1038/srep19157
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1038/srep19998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008058026
    159 https://doi.org/10.1038/srep19998
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1186/1471-2156-11-94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027835018
    162 https://doi.org/10.1186/1471-2156-11-94
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1186/1471-2156-7-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041196868
    165 https://doi.org/10.1186/1471-2156-7-42
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1016/j.ajhg.2013.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040890435
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1016/j.cub.2004.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025930359
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1016/j.cub.2009.11.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035342137
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1016/j.forsciint.2006.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001721600
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1016/j.fsigen.2014.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022235423
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1016/j.fsigen.2015.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011189061
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1016/j.fsigen.2015.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013431985
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1046/j.1365-294x.2002.01650.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1042545303
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1073/pnas.0507714103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817939
    184 rdf:type schema:CreativeWork
    185 https://doi.org/10.1073/pnas.1513197113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016268476
    186 rdf:type schema:CreativeWork
    187 https://doi.org/10.1080/03014460.2017.1384508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091934701
    188 rdf:type schema:CreativeWork
    189 https://doi.org/10.1080/09723757.2008.11886023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092877572
    190 rdf:type schema:CreativeWork
    191 https://doi.org/10.1086/499411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058782138
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1093/bioinformatics/bts460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026432648
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1093/nar/16.3.1215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012912024
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1093/oxfordjournals.molbev.a026036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018569508
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1101/gr.7172008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049154127
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1111/j.1471-8286.2005.01155.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052284706
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1111/j.1755-0998.2010.02847.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020645983
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1127/0003-5548/2014/0368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062694319
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1353/hub.2003.0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049316621
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1371/journal.pone.0024282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052430860
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1371/journal.pone.0050269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020035237
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1371/journal.pone.0058633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015861418
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.2298/gensr1503901d schema:sameAs https://app.dimensions.ai/details/publication/pub.1027263823
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.3389/fgene.2017.00121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091862180
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.7717/peerj.281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042956549
    220 rdf:type schema:CreativeWork
    221 https://www.grid.ac/institutes/grid.145749.a schema:alternateName Centre for DNA Fingerprinting and Diagnostics
    222 schema:name Laboratory of DNA Fingerprinting Services, Centre for DNA Fingerprinting and Diagnostics, Uppal, 500039, Hyderabad, Telangana State, India
    223 Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Uppal, 500039, Hyderabad, Telangana State, India
    224 rdf:type schema:Organization
    225 https://www.grid.ac/institutes/grid.411639.8 schema:alternateName Manipal University
    226 schema:name Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
    227 Laboratory of Genomics and Profiling Applications, Centre for DNA Fingerprinting and Diagnostics, Uppal, 500039, Hyderabad, Telangana State, India
    228 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...