Quantitative Analysis of a Whole Cardiac Mass Using Dual-Energy Computed Tomography: Comparison with Conventional Computed Tomography and Magnetic Resonance Imaging View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-18

AUTHORS

Yoo Jin Hong, Jin Hur, Kyunghwa Han, Dong Jin Im, Young Joo Suh, Hye-Jeong Lee, Young Jin Kim, Byoung Wook Choi

ABSTRACT

It is critical to distinguish between cardiac tumors and thrombi because they require different treatment strategies. Although accurate differentiation of these cardiac masses can be challenging, computed tomography (CT) and magnetic resonance imaging (MRI) are promising tools to improve their diagnosis. This study aimed to assess the diagnostic value of a volume-based quantification strategy using dual-energy CT to differentiate between cardiac tumors and thrombi. We prospectively enrolled 41 patients who had a cardiac mass. All patients underwent electrocardiography gated dual-energy CT. Among them, 28 patients underwent late gadolinium enhancement cardiac MRI. For quantitative analysis, the following parameters of the entire cardiac masses were measured: CT attenuation values in Hounsfield units (HU), iodine concentration (mg/ml), and signal intensity (SI) ratio. A mixed effects model was used to evaluate the significance of differences in mean CT attenuation, mean iodine concentration, and SI ratios between the cardiac tumor and thrombus groups. Diagnostic performance of each parameter was evaluated by constructing a receiver operating characteristics curve. A total of 24 cardiac tumors and 19 cardiac thrombi were analyzed. The mean iodine concentration was significantly higher in tumors than in thrombi (tumors: 2.98 ± 0.23; thrombi: 1.79 ± 0.26, p = 0.002). The diagnostic performance of iodine concentration was better than that of post-contrast HU (area under the curve [AUC]: 0.77 vs. 0.51; p < 0.001), and worse than that of SI ratio (AUC: 0.89; p = 0.04) for differentiation of cardiac tumors and thrombi. Dual-energy CT using volume-based iodine measurements can differentiate between cardiac tumors and thrombi. More... »

PAGES

15334

References to SciGraph publications

  • 2006-12-07. Material differentiation by dual energy CT: initial experience in EUROPEAN RADIOLOGY
  • 2011-10-15. The usefulness of delayed contrast-enhanced cardiovascular magnetic resonance imaging in differentiating cardiac tumors from thrombi in stroke patients in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2014-07-11. Dual-energy cardiac computed tomography for differentiating cardiac myxoma from thrombus in THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING
  • 2006-07. Cardioembolic stroke in CURRENT ATHEROSCLEROSIS REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-33635-0

    DOI

    http://dx.doi.org/10.1038/s41598-018-33635-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107590484

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30337716


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Contrast Media", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diagnosis, Differential", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Diagnostic Techniques, Cardiovascular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Diseases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heart Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Iodine", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Magnetic Resonance Imaging", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Organ Size", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Predictive Value of Tests", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Thrombosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tomography, X-Ray Computed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Tumor Burden", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hong", 
            "givenName": "Yoo Jin", 
            "id": "sg:person.01014245442.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hur", 
            "givenName": "Jin", 
            "id": "sg:person.0631275763.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Han", 
            "givenName": "Kyunghwa", 
            "id": "sg:person.011475543172.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475543172.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Im", 
            "givenName": "Dong Jin", 
            "id": "sg:person.0724201617.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724201617.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Suh", 
            "givenName": "Young Joo", 
            "id": "sg:person.015766550713.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015766550713.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lee", 
            "givenName": "Hye-Jeong", 
            "id": "sg:person.01160231265.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kim", 
            "givenName": "Young Jin", 
            "id": "sg:person.01143557676.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea", 
              "id": "http://www.grid.ac/institutes/grid.15444.30", 
              "name": [
                "Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choi", 
            "givenName": "Byoung Wook", 
            "id": "sg:person.01101305576.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10554-011-9961-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018270619", 
              "https://doi.org/10.1007/s10554-011-9961-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11883-006-0009-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037941507", 
              "https://doi.org/10.1007/s11883-006-0009-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-006-0517-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018874898", 
              "https://doi.org/10.1007/s00330-006-0517-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10554-014-0490-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010427076", 
              "https://doi.org/10.1007/s10554-014-0490-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-18", 
        "datePublishedReg": "2018-10-18", 
        "description": "It is critical to distinguish between cardiac tumors and thrombi because they require different treatment strategies. Although accurate differentiation of these cardiac masses can be challenging, computed tomography (CT) and magnetic resonance imaging (MRI) are promising tools to improve their diagnosis. This study aimed to assess the diagnostic value of a volume-based quantification strategy using dual-energy CT to differentiate between cardiac tumors and thrombi. We prospectively enrolled 41 patients who had a cardiac mass. All patients underwent electrocardiography gated dual-energy CT. Among them, 28 patients underwent late gadolinium enhancement cardiac MRI. For quantitative analysis, the following parameters of the entire cardiac masses were measured: CT attenuation values in Hounsfield units (HU), iodine concentration (mg/ml), and signal intensity (SI) ratio. A mixed effects model was used to evaluate the significance of differences in mean CT attenuation, mean iodine concentration, and SI ratios between the cardiac tumor and thrombus groups. Diagnostic performance of each parameter was evaluated by constructing a receiver operating characteristics curve. A total of 24 cardiac tumors and 19 cardiac thrombi were analyzed. The mean iodine concentration was significantly higher in tumors than in thrombi (tumors: 2.98\u2009\u00b1\u20090.23; thrombi: 1.79\u2009\u00b1\u20090.26, p\u2009=\u20090.002). The diagnostic performance of iodine concentration was better than that of post-contrast HU (area under the curve [AUC]: 0.77 vs. 0.51; p\u2009<\u20090.001), and worse than that of SI ratio (AUC: 0.89; p\u2009=\u20090.04) for differentiation of cardiac tumors and thrombi. Dual-energy CT using volume-based iodine measurements can differentiate between cardiac tumors and thrombi.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-018-33635-0", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "magnetic resonance imaging", 
          "cardiac tumors", 
          "cardiac mass", 
          "computed tomography", 
          "Dual-Energy Computed Tomography", 
          "Hounsfield units", 
          "late gadolinium enhancement cardiac magnetic resonance imaging", 
          "enhancement cardiac magnetic resonance imaging", 
          "iodine concentration", 
          "resonance imaging", 
          "cardiac magnetic resonance imaging", 
          "diagnostic performance", 
          "different treatment strategies", 
          "mean CT attenuation", 
          "mean iodine concentration", 
          "conventional computed tomography", 
          "CT attenuation values", 
          "cardiac thrombus", 
          "thrombus group", 
          "treatment strategies", 
          "signal intensity ratio", 
          "thrombus", 
          "diagnostic value", 
          "tumors", 
          "CT attenuation", 
          "patients", 
          "mixed effects models", 
          "characteristic curve", 
          "significance of differences", 
          "iodine measurements", 
          "tomography", 
          "accurate differentiation", 
          "effects model", 
          "attenuation values", 
          "imaging", 
          "diagnosis", 
          "electrocardiography", 
          "differentiation", 
          "total", 
          "concentration", 
          "quantitative analysis", 
          "mass", 
          "group", 
          "ratio", 
          "differences", 
          "significance", 
          "strategies", 
          "study", 
          "analysis", 
          "attenuation", 
          "values", 
          "units", 
          "receiver", 
          "curves", 
          "comparison", 
          "Si ratio", 
          "quantification strategies", 
          "tool", 
          "parameters", 
          "measurements", 
          "model", 
          "performance", 
          "intensity ratio"
        ], 
        "name": "Quantitative Analysis of a Whole Cardiac Mass Using Dual-Energy Computed Tomography: Comparison with Conventional Computed Tomography and Magnetic Resonance Imaging", 
        "pagination": "15334", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107590484"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-33635-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30337716"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-33635-0", 
          "https://app.dimensions.ai/details/publication/pub.1107590484"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_794.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-018-33635-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33635-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33635-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33635-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33635-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    260 TRIPLES      21 PREDICATES      110 URIs      98 LITERALS      25 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-33635-0 schema:about N0e730c06a6d34034bf377b8249f8b9b3
    2 N135e612ae80947a1a65b04e2ff01e8fe
    3 N1665b2060bbc4477a8569d51b8e34dbb
    4 N1e83f828585b4daaa0d946a26cbcd96e
    5 N38e33228916a4ec6b502fef4fdc76cd2
    6 N3a7de68074974859aebb6eb102a7b5b2
    7 N492b6b4c390a4722ac667b4c04f4acd0
    8 N59c8ddc526c24e5d8ec1942ac18546a0
    9 N653b5348ae3e488689f66a82a9292795
    10 N74f2ca890cef442793ce5eafd81a5a9c
    11 N7919ecfb8db04f3b870c741adc4f560a
    12 N92a8a775a971426fa18b643ac272a4a7
    13 Na413ca4660ad4aa398efc99bea2b7bb9
    14 Nb379a30055434e769a91f63117036170
    15 Nbeef14cc06fc4c7b9e88877b84df6aa7
    16 Nc123c0a2230f4fbe9724a4df6a363194
    17 Nd31b39af91ad40b095b7e66bd6c24ece
    18 Nf51bc781735c42c2a89d6ebc7c2eb61e
    19 anzsrc-for:11
    20 anzsrc-for:1103
    21 schema:author Nceee8e21923a41c8b5739f52dd2af8ef
    22 schema:citation sg:pub.10.1007/s00330-006-0517-6
    23 sg:pub.10.1007/s10554-011-9961-8
    24 sg:pub.10.1007/s10554-014-0490-0
    25 sg:pub.10.1007/s11883-006-0009-9
    26 schema:datePublished 2018-10-18
    27 schema:datePublishedReg 2018-10-18
    28 schema:description It is critical to distinguish between cardiac tumors and thrombi because they require different treatment strategies. Although accurate differentiation of these cardiac masses can be challenging, computed tomography (CT) and magnetic resonance imaging (MRI) are promising tools to improve their diagnosis. This study aimed to assess the diagnostic value of a volume-based quantification strategy using dual-energy CT to differentiate between cardiac tumors and thrombi. We prospectively enrolled 41 patients who had a cardiac mass. All patients underwent electrocardiography gated dual-energy CT. Among them, 28 patients underwent late gadolinium enhancement cardiac MRI. For quantitative analysis, the following parameters of the entire cardiac masses were measured: CT attenuation values in Hounsfield units (HU), iodine concentration (mg/ml), and signal intensity (SI) ratio. A mixed effects model was used to evaluate the significance of differences in mean CT attenuation, mean iodine concentration, and SI ratios between the cardiac tumor and thrombus groups. Diagnostic performance of each parameter was evaluated by constructing a receiver operating characteristics curve. A total of 24 cardiac tumors and 19 cardiac thrombi were analyzed. The mean iodine concentration was significantly higher in tumors than in thrombi (tumors: 2.98 ± 0.23; thrombi: 1.79 ± 0.26, p = 0.002). The diagnostic performance of iodine concentration was better than that of post-contrast HU (area under the curve [AUC]: 0.77 vs. 0.51; p < 0.001), and worse than that of SI ratio (AUC: 0.89; p = 0.04) for differentiation of cardiac tumors and thrombi. Dual-energy CT using volume-based iodine measurements can differentiate between cardiac tumors and thrombi.
    29 schema:genre article
    30 schema:isAccessibleForFree true
    31 schema:isPartOf N06a94fe749dd449c8c68218e6a225f6e
    32 N69a996fefa3a4c8a9558f61d03bb6788
    33 sg:journal.1045337
    34 schema:keywords CT attenuation
    35 CT attenuation values
    36 Dual-Energy Computed Tomography
    37 Hounsfield units
    38 Si ratio
    39 accurate differentiation
    40 analysis
    41 attenuation
    42 attenuation values
    43 cardiac magnetic resonance imaging
    44 cardiac mass
    45 cardiac thrombus
    46 cardiac tumors
    47 characteristic curve
    48 comparison
    49 computed tomography
    50 concentration
    51 conventional computed tomography
    52 curves
    53 diagnosis
    54 diagnostic performance
    55 diagnostic value
    56 differences
    57 different treatment strategies
    58 differentiation
    59 effects model
    60 electrocardiography
    61 enhancement cardiac magnetic resonance imaging
    62 group
    63 imaging
    64 intensity ratio
    65 iodine concentration
    66 iodine measurements
    67 late gadolinium enhancement cardiac magnetic resonance imaging
    68 magnetic resonance imaging
    69 mass
    70 mean CT attenuation
    71 mean iodine concentration
    72 measurements
    73 mixed effects models
    74 model
    75 parameters
    76 patients
    77 performance
    78 quantification strategies
    79 quantitative analysis
    80 ratio
    81 receiver
    82 resonance imaging
    83 signal intensity ratio
    84 significance
    85 significance of differences
    86 strategies
    87 study
    88 thrombus
    89 thrombus group
    90 tomography
    91 tool
    92 total
    93 treatment strategies
    94 tumors
    95 units
    96 values
    97 schema:name Quantitative Analysis of a Whole Cardiac Mass Using Dual-Energy Computed Tomography: Comparison with Conventional Computed Tomography and Magnetic Resonance Imaging
    98 schema:pagination 15334
    99 schema:productId N219c0ef0ef4d470e98a740c2f8fca7ae
    100 N35e83ff3047d463983e1958cd4891026
    101 Nc932e07a36fe43089f446d3fba8ee1dc
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107590484
    103 https://doi.org/10.1038/s41598-018-33635-0
    104 schema:sdDatePublished 2022-10-01T06:45
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher N35d9528f723b42d8a7a9d93c6a3fb09e
    107 schema:url https://doi.org/10.1038/s41598-018-33635-0
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N06a94fe749dd449c8c68218e6a225f6e schema:issueNumber 1
    112 rdf:type schema:PublicationIssue
    113 N0e730c06a6d34034bf377b8249f8b9b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Diagnosis, Differential
    115 rdf:type schema:DefinedTerm
    116 N135e612ae80947a1a65b04e2ff01e8fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Predictive Value of Tests
    118 rdf:type schema:DefinedTerm
    119 N1665b2060bbc4477a8569d51b8e34dbb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Tumor Burden
    121 rdf:type schema:DefinedTerm
    122 N1e83f828585b4daaa0d946a26cbcd96e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Male
    124 rdf:type schema:DefinedTerm
    125 N219c0ef0ef4d470e98a740c2f8fca7ae schema:name pubmed_id
    126 schema:value 30337716
    127 rdf:type schema:PropertyValue
    128 N35d9528f723b42d8a7a9d93c6a3fb09e schema:name Springer Nature - SN SciGraph project
    129 rdf:type schema:Organization
    130 N35e83ff3047d463983e1958cd4891026 schema:name dimensions_id
    131 schema:value pub.1107590484
    132 rdf:type schema:PropertyValue
    133 N38e33228916a4ec6b502fef4fdc76cd2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Heart Neoplasms
    135 rdf:type schema:DefinedTerm
    136 N3a7de68074974859aebb6eb102a7b5b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Iodine
    138 rdf:type schema:DefinedTerm
    139 N3d28be91c206406496e0395aa4be624b rdf:first sg:person.0631275763.56
    140 rdf:rest N94c58245fdf64d1c95698e08854bd4ca
    141 N492b6b4c390a4722ac667b4c04f4acd0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Diagnostic Techniques, Cardiovascular
    143 rdf:type schema:DefinedTerm
    144 N521e02266d9a46b7a04006e088851e3d rdf:first sg:person.0724201617.22
    145 rdf:rest N7d1ee6fbe0d843bcb3d565fd46ac616e
    146 N59c8ddc526c24e5d8ec1942ac18546a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Heart Diseases
    148 rdf:type schema:DefinedTerm
    149 N653b5348ae3e488689f66a82a9292795 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Thrombosis
    151 rdf:type schema:DefinedTerm
    152 N69a996fefa3a4c8a9558f61d03bb6788 schema:volumeNumber 8
    153 rdf:type schema:PublicationVolume
    154 N6a8091fb25e94aeeb4aaef13780fd2b4 rdf:first sg:person.01101305576.04
    155 rdf:rest rdf:nil
    156 N6a83dbafbb484119a6b012daa5f89490 rdf:first sg:person.01143557676.31
    157 rdf:rest N6a8091fb25e94aeeb4aaef13780fd2b4
    158 N74f2ca890cef442793ce5eafd81a5a9c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Organ Size
    160 rdf:type schema:DefinedTerm
    161 N7919ecfb8db04f3b870c741adc4f560a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Tomography, X-Ray Computed
    163 rdf:type schema:DefinedTerm
    164 N7d1ee6fbe0d843bcb3d565fd46ac616e rdf:first sg:person.015766550713.45
    165 rdf:rest Nc3285955e00f47e38265e733ffe3bad5
    166 N92a8a775a971426fa18b643ac272a4a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Magnetic Resonance Imaging
    168 rdf:type schema:DefinedTerm
    169 N94c58245fdf64d1c95698e08854bd4ca rdf:first sg:person.011475543172.00
    170 rdf:rest N521e02266d9a46b7a04006e088851e3d
    171 Na413ca4660ad4aa398efc99bea2b7bb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Contrast Media
    173 rdf:type schema:DefinedTerm
    174 Nb379a30055434e769a91f63117036170 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Adult
    176 rdf:type schema:DefinedTerm
    177 Nbeef14cc06fc4c7b9e88877b84df6aa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Humans
    179 rdf:type schema:DefinedTerm
    180 Nc123c0a2230f4fbe9724a4df6a363194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Middle Aged
    182 rdf:type schema:DefinedTerm
    183 Nc3285955e00f47e38265e733ffe3bad5 rdf:first sg:person.01160231265.97
    184 rdf:rest N6a83dbafbb484119a6b012daa5f89490
    185 Nc932e07a36fe43089f446d3fba8ee1dc schema:name doi
    186 schema:value 10.1038/s41598-018-33635-0
    187 rdf:type schema:PropertyValue
    188 Nceee8e21923a41c8b5739f52dd2af8ef rdf:first sg:person.01014245442.81
    189 rdf:rest N3d28be91c206406496e0395aa4be624b
    190 Nd31b39af91ad40b095b7e66bd6c24ece schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Aged
    192 rdf:type schema:DefinedTerm
    193 Nf51bc781735c42c2a89d6ebc7c2eb61e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Female
    195 rdf:type schema:DefinedTerm
    196 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    197 schema:name Medical and Health Sciences
    198 rdf:type schema:DefinedTerm
    199 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Clinical Sciences
    201 rdf:type schema:DefinedTerm
    202 sg:journal.1045337 schema:issn 2045-2322
    203 schema:name Scientific Reports
    204 schema:publisher Springer Nature
    205 rdf:type schema:Periodical
    206 sg:person.01014245442.81 schema:affiliation grid-institutes:grid.15444.30
    207 schema:familyName Hong
    208 schema:givenName Yoo Jin
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014245442.81
    210 rdf:type schema:Person
    211 sg:person.01101305576.04 schema:affiliation grid-institutes:grid.15444.30
    212 schema:familyName Choi
    213 schema:givenName Byoung Wook
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101305576.04
    215 rdf:type schema:Person
    216 sg:person.01143557676.31 schema:affiliation grid-institutes:grid.15444.30
    217 schema:familyName Kim
    218 schema:givenName Young Jin
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01143557676.31
    220 rdf:type schema:Person
    221 sg:person.011475543172.00 schema:affiliation grid-institutes:grid.15444.30
    222 schema:familyName Han
    223 schema:givenName Kyunghwa
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011475543172.00
    225 rdf:type schema:Person
    226 sg:person.01160231265.97 schema:affiliation grid-institutes:grid.15444.30
    227 schema:familyName Lee
    228 schema:givenName Hye-Jeong
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160231265.97
    230 rdf:type schema:Person
    231 sg:person.015766550713.45 schema:affiliation grid-institutes:grid.15444.30
    232 schema:familyName Suh
    233 schema:givenName Young Joo
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015766550713.45
    235 rdf:type schema:Person
    236 sg:person.0631275763.56 schema:affiliation grid-institutes:grid.15444.30
    237 schema:familyName Hur
    238 schema:givenName Jin
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631275763.56
    240 rdf:type schema:Person
    241 sg:person.0724201617.22 schema:affiliation grid-institutes:grid.15444.30
    242 schema:familyName Im
    243 schema:givenName Dong Jin
    244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724201617.22
    245 rdf:type schema:Person
    246 sg:pub.10.1007/s00330-006-0517-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018874898
    247 https://doi.org/10.1007/s00330-006-0517-6
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1007/s10554-011-9961-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018270619
    250 https://doi.org/10.1007/s10554-011-9961-8
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1007/s10554-014-0490-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010427076
    253 https://doi.org/10.1007/s10554-014-0490-0
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1007/s11883-006-0009-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037941507
    256 https://doi.org/10.1007/s11883-006-0009-9
    257 rdf:type schema:CreativeWork
    258 grid-institutes:grid.15444.30 schema:alternateName Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
    259 schema:name Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Severance Hospital, Seoul, Republic of Korea
    260 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...