Finite-resource teleportation stretching for continuous-variable systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-10-15

AUTHORS

Riccardo Laurenza, Samuel L. Braunstein, Stefano Pirandola

ABSTRACT

We show how adaptive protocols of quantum and private communication through bosonic Gaussian channels can be simplifed into much easier block versions that involve resource states with finite energy. This is achieved by combining an adaptive-to-block reduction technique devised earlier, based on teleportation stretching and relative entropy of entanglement, with a recent finite-resource simulation of Gaussian channels. In this way, we derive weak converse upper bounds for the secret-key capacity of phase-insensitive Gaussian channels which approximate the optimal limit for infinite energy. Our results apply to both point-to-point and repeater-assisted private communications. More... »

PAGES

15267

References to SciGraph publications

  • 2007-01-01. Unifying Classical and Quantum Key Distillation in THEORY OF CRYPTOGRAPHY
  • 2012-03-07. Entanglement of the Antisymmetric State in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2016-04-12. Physics: Unite to build a quantum Internet in NATURE
  • 2008-06-18. The quantum internet in NATURE
  • 2015-09-29. Advances in quantum teleportation in NATURE PHOTONICS
  • 2017-05-05. Relative Entropy Bounds on Quantum, Private and Repeater Capacities in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2017-04-26. Fundamental limits of repeaterless quantum communications in NATURE COMMUNICATIONS
  • 2018-09-25. Teleportation simulation of bosonic Gaussian channels: strong and uniform convergence in THE EUROPEAN PHYSICAL JOURNAL D
  • 2017. Quantum Information Theory, Mathematical Foundation in NONE
  • 2006-10. Quantum teleportation with continuous variables: A survey in LASER PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-33332-y

    DOI

    http://dx.doi.org/10.1038/s41598-018-33332-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1107514511

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30323310


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Computation Theory and Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Computer Science and York Centre for Quantum Technologies, University of York, York, YO10 5GH United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.5685.e", 
              "name": [
                "Computer Science and York Centre for Quantum Technologies, University of York, York, YO10 5GH United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Laurenza", 
            "givenName": "Riccardo", 
            "id": "sg:person.010126330633.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126330633.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science and York Centre for Quantum Technologies, University of York, York, YO10 5GH United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.5685.e", 
              "name": [
                "Computer Science and York Centre for Quantum Technologies, University of York, York, YO10 5GH United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Braunstein", 
            "givenName": "Samuel L.", 
            "id": "sg:person.0666766367.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Computer Science and York Centre for Quantum Technologies, University of York, York, YO10 5GH United Kingdom", 
              "id": "http://www.grid.ac/institutes/grid.5685.e", 
              "name": [
                "Computer Science and York Centre for Quantum Technologies, University of York, York, YO10 5GH United Kingdom"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pirandola", 
            "givenName": "Stefano", 
            "id": "sg:person.0735101567.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735101567.34"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-662-49725-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036373241", 
              "https://doi.org/10.1007/978-3-662-49725-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-70936-7_25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041303957", 
              "https://doi.org/10.1007/978-3-540-70936-7_25"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms15043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085064865", 
              "https://doi.org/10.1038/ncomms15043"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2018-90253-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107279898", 
              "https://doi.org/10.1140/epjd/e2018-90253-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2015.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040127709", 
              "https://doi.org/10.1038/nphoton.2015.154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-017-2885-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085177640", 
              "https://doi.org/10.1007/s00220-017-2885-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-012-1446-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048611616", 
              "https://doi.org/10.1007/s00220-012-1446-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1054660x06100057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027504592", 
              "https://doi.org/10.1134/s1054660x06100057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07127", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017984816", 
              "https://doi.org/10.1038/nature07127"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/532169a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019788887", 
              "https://doi.org/10.1038/532169a"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-10-15", 
        "datePublishedReg": "2018-10-15", 
        "description": "We show how adaptive protocols of quantum and private communication through bosonic Gaussian channels can be simplifed into much easier block versions that involve resource states with finite energy. This is achieved by combining an adaptive-to-block reduction technique devised earlier, based on teleportation stretching and relative entropy of entanglement, with a recent finite-resource simulation of Gaussian channels. In this way, we derive weak converse upper bounds for the secret-key capacity of phase-insensitive Gaussian channels which approximate the optimal limit for infinite energy. Our results apply to both point-to-point and repeater-assisted private communications.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-018-33332-y", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3956583", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "Gaussian channel", 
          "continuous-variable systems", 
          "finite energy", 
          "phase-insensitive Gaussian channels", 
          "upper bounds", 
          "relative entropy", 
          "infinite energy", 
          "block version", 
          "bosonic Gaussian channels", 
          "adaptive protocol", 
          "reduction techniques", 
          "resource states", 
          "optimal limits", 
          "bounds", 
          "private communication", 
          "entropy", 
          "quantum", 
          "entanglement", 
          "point", 
          "adaptive", 
          "simulations", 
          "energy", 
          "teleportation", 
          "channels", 
          "version", 
          "limit", 
          "system", 
          "technique", 
          "secret key capacity", 
          "state", 
          "stretching", 
          "communication", 
          "results", 
          "way", 
          "protocol", 
          "capacity", 
          "easier block versions", 
          "block reduction technique", 
          "teleportation stretching", 
          "recent finite-resource simulation", 
          "finite-resource simulation", 
          "weak converse upper bounds", 
          "converse upper bounds", 
          "repeater-assisted private communications", 
          "Finite-resource teleportation"
        ], 
        "name": "Finite-resource teleportation stretching for continuous-variable systems", 
        "pagination": "15267", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1107514511"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-33332-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30323310"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-33332-y", 
          "https://app.dimensions.ai/details/publication/pub.1107514511"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_761.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-018-33332-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33332-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33332-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33332-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33332-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    162 TRIPLES      22 PREDICATES      81 URIs      63 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-33332-y schema:about anzsrc-for:08
    2 anzsrc-for:0802
    3 schema:author N3b8deac5be5e457eaa0ad4fbf41bf976
    4 schema:citation sg:pub.10.1007/978-3-540-70936-7_25
    5 sg:pub.10.1007/978-3-662-49725-8
    6 sg:pub.10.1007/s00220-012-1446-7
    7 sg:pub.10.1007/s00220-017-2885-y
    8 sg:pub.10.1038/532169a
    9 sg:pub.10.1038/nature07127
    10 sg:pub.10.1038/ncomms15043
    11 sg:pub.10.1038/nphoton.2015.154
    12 sg:pub.10.1134/s1054660x06100057
    13 sg:pub.10.1140/epjd/e2018-90253-1
    14 schema:datePublished 2018-10-15
    15 schema:datePublishedReg 2018-10-15
    16 schema:description We show how adaptive protocols of quantum and private communication through bosonic Gaussian channels can be simplifed into much easier block versions that involve resource states with finite energy. This is achieved by combining an adaptive-to-block reduction technique devised earlier, based on teleportation stretching and relative entropy of entanglement, with a recent finite-resource simulation of Gaussian channels. In this way, we derive weak converse upper bounds for the secret-key capacity of phase-insensitive Gaussian channels which approximate the optimal limit for infinite energy. Our results apply to both point-to-point and repeater-assisted private communications.
    17 schema:genre article
    18 schema:inLanguage en
    19 schema:isAccessibleForFree true
    20 schema:isPartOf N1a3cbe057a204fe983309ff462cb0948
    21 N1e77058e5eba4387873c09ec2161953d
    22 sg:journal.1045337
    23 schema:keywords Finite-resource teleportation
    24 Gaussian channel
    25 adaptive
    26 adaptive protocol
    27 block reduction technique
    28 block version
    29 bosonic Gaussian channels
    30 bounds
    31 capacity
    32 channels
    33 communication
    34 continuous-variable systems
    35 converse upper bounds
    36 easier block versions
    37 energy
    38 entanglement
    39 entropy
    40 finite energy
    41 finite-resource simulation
    42 infinite energy
    43 limit
    44 optimal limits
    45 phase-insensitive Gaussian channels
    46 point
    47 private communication
    48 protocol
    49 quantum
    50 recent finite-resource simulation
    51 reduction techniques
    52 relative entropy
    53 repeater-assisted private communications
    54 resource states
    55 results
    56 secret key capacity
    57 simulations
    58 state
    59 stretching
    60 system
    61 technique
    62 teleportation
    63 teleportation stretching
    64 upper bounds
    65 version
    66 way
    67 weak converse upper bounds
    68 schema:name Finite-resource teleportation stretching for continuous-variable systems
    69 schema:pagination 15267
    70 schema:productId N26c11e96560b4a35a1414afec8dfa1b7
    71 N936adf4ff81b47d9bddecc1e8a137bda
    72 Na7dacdca80f54e8ab3d5f429ee389161
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107514511
    74 https://doi.org/10.1038/s41598-018-33332-y
    75 schema:sdDatePublished 2021-11-01T18:31
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher N5343e2eb4ec0472fb04c2c3475319e1b
    78 schema:url https://doi.org/10.1038/s41598-018-33332-y
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N09007b73c9a34e15a1fa6d96b104c72c rdf:first sg:person.0735101567.34
    83 rdf:rest rdf:nil
    84 N1a3cbe057a204fe983309ff462cb0948 schema:issueNumber 1
    85 rdf:type schema:PublicationIssue
    86 N1e77058e5eba4387873c09ec2161953d schema:volumeNumber 8
    87 rdf:type schema:PublicationVolume
    88 N26c11e96560b4a35a1414afec8dfa1b7 schema:name dimensions_id
    89 schema:value pub.1107514511
    90 rdf:type schema:PropertyValue
    91 N3b8deac5be5e457eaa0ad4fbf41bf976 rdf:first sg:person.010126330633.65
    92 rdf:rest Nf2e1d5af8bc649c19cc7916037292f7c
    93 N5343e2eb4ec0472fb04c2c3475319e1b schema:name Springer Nature - SN SciGraph project
    94 rdf:type schema:Organization
    95 N936adf4ff81b47d9bddecc1e8a137bda schema:name pubmed_id
    96 schema:value 30323310
    97 rdf:type schema:PropertyValue
    98 Na7dacdca80f54e8ab3d5f429ee389161 schema:name doi
    99 schema:value 10.1038/s41598-018-33332-y
    100 rdf:type schema:PropertyValue
    101 Nf2e1d5af8bc649c19cc7916037292f7c rdf:first sg:person.0666766367.22
    102 rdf:rest N09007b73c9a34e15a1fa6d96b104c72c
    103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Information and Computing Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Computation Theory and Mathematics
    108 rdf:type schema:DefinedTerm
    109 sg:grant.3956583 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-33332-y
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1045337 schema:issn 2045-2322
    112 schema:name Scientific Reports
    113 schema:publisher Springer Nature
    114 rdf:type schema:Periodical
    115 sg:person.010126330633.65 schema:affiliation grid-institutes:grid.5685.e
    116 schema:familyName Laurenza
    117 schema:givenName Riccardo
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010126330633.65
    119 rdf:type schema:Person
    120 sg:person.0666766367.22 schema:affiliation grid-institutes:grid.5685.e
    121 schema:familyName Braunstein
    122 schema:givenName Samuel L.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0666766367.22
    124 rdf:type schema:Person
    125 sg:person.0735101567.34 schema:affiliation grid-institutes:grid.5685.e
    126 schema:familyName Pirandola
    127 schema:givenName Stefano
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735101567.34
    129 rdf:type schema:Person
    130 sg:pub.10.1007/978-3-540-70936-7_25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041303957
    131 https://doi.org/10.1007/978-3-540-70936-7_25
    132 rdf:type schema:CreativeWork
    133 sg:pub.10.1007/978-3-662-49725-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036373241
    134 https://doi.org/10.1007/978-3-662-49725-8
    135 rdf:type schema:CreativeWork
    136 sg:pub.10.1007/s00220-012-1446-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048611616
    137 https://doi.org/10.1007/s00220-012-1446-7
    138 rdf:type schema:CreativeWork
    139 sg:pub.10.1007/s00220-017-2885-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085177640
    140 https://doi.org/10.1007/s00220-017-2885-y
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1038/532169a schema:sameAs https://app.dimensions.ai/details/publication/pub.1019788887
    143 https://doi.org/10.1038/532169a
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1038/nature07127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017984816
    146 https://doi.org/10.1038/nature07127
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1038/ncomms15043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085064865
    149 https://doi.org/10.1038/ncomms15043
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1038/nphoton.2015.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040127709
    152 https://doi.org/10.1038/nphoton.2015.154
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1134/s1054660x06100057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027504592
    155 https://doi.org/10.1134/s1054660x06100057
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1140/epjd/e2018-90253-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107279898
    158 https://doi.org/10.1140/epjd/e2018-90253-1
    159 rdf:type schema:CreativeWork
    160 grid-institutes:grid.5685.e schema:alternateName Computer Science and York Centre for Quantum Technologies, University of York, York, YO10 5GH United Kingdom
    161 schema:name Computer Science and York Centre for Quantum Technologies, University of York, York, YO10 5GH United Kingdom
    162 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...