Genome-wide analysis of horizontally acquired genes in the genus Mycobacterium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Arup Panda, Michel Drancourt, Tamir Tuller, Pierre Pontarotti

ABSTRACT

Horizontal gene transfer (HGT) was attributed as a major driving force for the innovation and evolution of prokaryotic genomes. Previously, multiple research endeavors were undertaken to decipher HGT in different bacterial lineages. The genus Mycobacterium houses some of the most deadly human pathogens; however, the impact of HGT in Mycobacterium has never been addressed in a systematic way. Previous initiatives to explore the genomic imprints of HGTs in Mycobacterium were focused on few selected species, specifically among the members of Mycobacterium tuberculosis complex. Considering the recent availability of a large number of genomes, the current study was initiated to decipher the probable events of HGTs among 109 completely sequenced Mycobacterium species. Our comprehensive phylogenetic analysis with more than 9,000 families of Mycobacterium proteins allowed us to list several instances of gene transfers spread across the Mycobacterium phylogeny. Moreover, by examining the topology of gene phylogenies here, we identified the species most likely to donate and receive these genes and provided a detailed overview of the putative functions these genes may be involved in. Our study suggested that horizontally acquired foreign genes had played an enduring role in the evolution of Mycobacterium genomes and have contributed to their metabolic versatility and pathogenicity. More... »

PAGES

14817

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-33261-w

DOI

http://dx.doi.org/10.1038/s41598-018-33261-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107306617

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30287860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) M\u00e9diterran\u00e9e Infection, Marseille, France", 
            "Department of Biomedical Engineering, Tel-Aviv University, 69978, Ramat Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panda", 
        "givenName": "Arup", 
        "id": "sg:person.014574554603.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014574554603.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) M\u00e9diterran\u00e9e Infection, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Drancourt", 
        "givenName": "Michel", 
        "id": "sg:person.01106456741.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106456741.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Biomedical Engineering, Tel-Aviv University, 69978, Ramat Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tuller", 
        "givenName": "Tamir", 
        "id": "sg:person.01160017665.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160017665.68"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National Centre for Scientific Research", 
          "id": "https://www.grid.ac/institutes/grid.4444.0", 
          "name": [
            "Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) M\u00e9diterran\u00e9e Infection, Marseille, France", 
            "CNRS, Marseille, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pontarotti", 
        "givenName": "Pierre", 
        "id": "sg:person.01362056435.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362056435.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/nar/gkw1004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000159214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.1224503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000505228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000624882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000848409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genet.37.050503.084247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000856355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-15-s1-s2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000914039", 
          "https://doi.org/10.1186/1471-2148-15-s1-s2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ph5111210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001421135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002840749", 
          "https://doi.org/10.1038/nrg2386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002994949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003127501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003229314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0966-842x(01)02282-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003757095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0010056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004964006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.0010056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004964006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2006.00041.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005266984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-phyto-102313-050127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006689470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006999522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.01310-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007546945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007956667", 
          "https://doi.org/10.1038/nrg3962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkv1070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010056536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010680353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011521639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2011.01.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011985167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012034321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.1003419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012631216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/w06-001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013073133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2011.00292.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013179409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014005457", 
          "https://doi.org/10.1186/1471-2164-13-120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2015.11.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017501175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gks1219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017730157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.55.1.709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020062045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2008.00136.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020360104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1737230100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020982895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022543597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022986735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024899071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025846396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fmicb.2016.00173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026042853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro2077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027294472", 
          "https://doi.org/10.1038/nrmicro2077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.96.7.3801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028400086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028540883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028540883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0168-9525(01)02529-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029303398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029793403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605709103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030609228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033348794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0065-2911(09)05502-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034131942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tim.2010.12.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034136556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35012500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035273826", 
          "https://doi.org/10.1038/35012500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35012500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035273826", 
          "https://doi.org/10.1038/35012500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/31159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035640914", 
          "https://doi.org/10.1038/31159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/31159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035640914", 
          "https://doi.org/10.1038/31159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-9-196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036000858", 
          "https://doi.org/10.1186/1471-2148-9-196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/4387461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037978327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/82_2012_279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040078850", 
          "https://doi.org/10.1007/82_2012_279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040086465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btr088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041309983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2000.tb00550.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043630083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msw046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043817932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s2214-109x(14)70361-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044129965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sysbio/syp103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044222785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fbr.2011.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046136721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.ppat.0010005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047201941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msj120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049276831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050371590", 
          "https://doi.org/10.1038/ng1686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050371590", 
          "https://doi.org/10.1038/ng1686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/ijs.0.63094-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060386332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/cshperspect.a018036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060406944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/microbiolspec.mgm2-0022-2013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062731258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079013381", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Horizontal gene transfer (HGT) was attributed as a major driving force for the innovation and evolution of prokaryotic genomes. Previously, multiple research endeavors were undertaken to decipher HGT in different bacterial lineages. The genus Mycobacterium houses some of the most deadly human pathogens; however, the impact of HGT in Mycobacterium has never been addressed in a systematic way. Previous initiatives to explore the genomic imprints of HGTs in Mycobacterium were focused on few selected species, specifically among the members of Mycobacterium tuberculosis complex. Considering the recent availability of a large number of genomes, the current study was initiated to decipher the probable events of HGTs among 109 completely sequenced Mycobacterium species. Our comprehensive phylogenetic analysis with more than 9,000 families of Mycobacterium proteins allowed us to list several instances of gene transfers spread across the Mycobacterium phylogeny. Moreover, by examining the topology of gene phylogenies here, we identified the species most likely to donate and receive these genes and provided a detailed overview of the putative functions these genes may be involved in. Our study suggested that horizontally acquired foreign genes had played an enduring role in the evolution of Mycobacterium genomes and have contributed to their metabolic versatility and pathogenicity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-33261-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Genome-wide analysis of horizontally acquired genes in the genus Mycobacterium", 
    "pagination": "14817", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "adecb80a39b1878b24695289ea0c035fed599eddff6a9b32860fe2b963bddedc"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30287860"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-33261-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107306617"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-33261-w", 
      "https://app.dimensions.ai/details/publication/pub.1107306617"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-33261-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33261-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33261-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33261-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-33261-w'


 

This table displays all metadata directly associated to this object as RDF triples.

300 TRIPLES      21 PREDICATES      94 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-33261-w schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Nf0fc8366369f423fb03b580da89da55c
4 schema:citation sg:pub.10.1007/82_2012_279
5 sg:pub.10.1038/31159
6 sg:pub.10.1038/35012500
7 sg:pub.10.1038/ng1686
8 sg:pub.10.1038/nrg2386
9 sg:pub.10.1038/nrg3962
10 sg:pub.10.1038/nrmicro2077
11 sg:pub.10.1186/1471-2148-15-s1-s2
12 sg:pub.10.1186/1471-2148-9-196
13 sg:pub.10.1186/1471-2164-13-120
14 https://app.dimensions.ai/details/publication/pub.1079013381
15 https://doi.org/10.1016/j.cub.2011.01.045
16 https://doi.org/10.1016/j.fbr.2011.04.003
17 https://doi.org/10.1016/j.jmb.2015.11.006
18 https://doi.org/10.1016/j.tim.2010.12.008
19 https://doi.org/10.1016/s0065-2911(09)05502-7
20 https://doi.org/10.1016/s0168-9525(01)02529-x
21 https://doi.org/10.1016/s0966-842x(01)02282-x
22 https://doi.org/10.1016/s2214-109x(14)70361-4
23 https://doi.org/10.1073/pnas.0605709103
24 https://doi.org/10.1073/pnas.1737230100
25 https://doi.org/10.1073/pnas.96.7.3801
26 https://doi.org/10.1093/bioinformatics/btq315
27 https://doi.org/10.1093/bioinformatics/btr088
28 https://doi.org/10.1093/bioinformatics/btu033
29 https://doi.org/10.1093/molbev/msj120
30 https://doi.org/10.1093/molbev/msm111
31 https://doi.org/10.1093/molbev/msp077
32 https://doi.org/10.1093/molbev/msw046
33 https://doi.org/10.1093/nar/29.1.37
34 https://doi.org/10.1093/nar/gkh340
35 https://doi.org/10.1093/nar/gkn656
36 https://doi.org/10.1093/nar/gkn668
37 https://doi.org/10.1093/nar/gkr054
38 https://doi.org/10.1093/nar/gkr313
39 https://doi.org/10.1093/nar/gks1219
40 https://doi.org/10.1093/nar/gks485
41 https://doi.org/10.1093/nar/gkv1070
42 https://doi.org/10.1093/nar/gkv1239
43 https://doi.org/10.1093/nar/gkw1004
44 https://doi.org/10.1093/nar/gkw1009
45 https://doi.org/10.1093/nar/gkw1070
46 https://doi.org/10.1093/sysbio/syp103
47 https://doi.org/10.1099/ijs.0.63094-0
48 https://doi.org/10.1101/cshperspect.a018036
49 https://doi.org/10.1101/gr.1224503
50 https://doi.org/10.1111/j.1574-6976.2000.tb00550.x
51 https://doi.org/10.1111/j.1574-6976.2006.00041.x
52 https://doi.org/10.1111/j.1574-6976.2008.00136.x
53 https://doi.org/10.1111/j.1574-6976.2011.00292.x
54 https://doi.org/10.1128/aac.01310-13
55 https://doi.org/10.1128/microbiolspec.mgm2-0022-2013
56 https://doi.org/10.1139/w06-001
57 https://doi.org/10.1146/annurev-phyto-102313-050127
58 https://doi.org/10.1146/annurev.genet.37.050503.084247
59 https://doi.org/10.1146/annurev.micro.55.1.709
60 https://doi.org/10.1155/2016/4387461
61 https://doi.org/10.1371/journal.pcbi.0010056
62 https://doi.org/10.1371/journal.pcbi.1004095
63 https://doi.org/10.1371/journal.pgen.0030138
64 https://doi.org/10.1371/journal.pone.0005660
65 https://doi.org/10.1371/journal.ppat.0010005
66 https://doi.org/10.1371/journal.ppat.1003419
67 https://doi.org/10.3389/fmicb.2016.00173
68 https://doi.org/10.3390/ph5111210
69 schema:datePublished 2018-12
70 schema:datePublishedReg 2018-12-01
71 schema:description Horizontal gene transfer (HGT) was attributed as a major driving force for the innovation and evolution of prokaryotic genomes. Previously, multiple research endeavors were undertaken to decipher HGT in different bacterial lineages. The genus Mycobacterium houses some of the most deadly human pathogens; however, the impact of HGT in Mycobacterium has never been addressed in a systematic way. Previous initiatives to explore the genomic imprints of HGTs in Mycobacterium were focused on few selected species, specifically among the members of Mycobacterium tuberculosis complex. Considering the recent availability of a large number of genomes, the current study was initiated to decipher the probable events of HGTs among 109 completely sequenced Mycobacterium species. Our comprehensive phylogenetic analysis with more than 9,000 families of Mycobacterium proteins allowed us to list several instances of gene transfers spread across the Mycobacterium phylogeny. Moreover, by examining the topology of gene phylogenies here, we identified the species most likely to donate and receive these genes and provided a detailed overview of the putative functions these genes may be involved in. Our study suggested that horizontally acquired foreign genes had played an enduring role in the evolution of Mycobacterium genomes and have contributed to their metabolic versatility and pathogenicity.
72 schema:genre research_article
73 schema:inLanguage en
74 schema:isAccessibleForFree true
75 schema:isPartOf N4816906cba0b4388a23e9a64acca22d8
76 N723a6f58690d4214bf8a37d9b1b54a96
77 sg:journal.1045337
78 schema:name Genome-wide analysis of horizontally acquired genes in the genus Mycobacterium
79 schema:pagination 14817
80 schema:productId N4987fc26ea864ec9bfe051e030959c5a
81 N900f63fa51494f18a6f886f74cd3a15c
82 Na55f7001fdf6463c9611ef21479ed87d
83 Nb9c40b427a3b45bf926dc56d7940de5c
84 Nf6d930dd72b44644a3d542efab902559
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107306617
86 https://doi.org/10.1038/s41598-018-33261-w
87 schema:sdDatePublished 2019-04-10T19:16
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N95958608568a468885d32962f530b242
90 schema:url https://www.nature.com/articles/s41598-018-33261-w
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N2fa9f7a184f844c98d0bf79edd5dd9c3 rdf:first sg:person.01160017665.68
95 rdf:rest N8e6369e75aff445b831b6458e7584018
96 N4816906cba0b4388a23e9a64acca22d8 schema:volumeNumber 8
97 rdf:type schema:PublicationVolume
98 N4987fc26ea864ec9bfe051e030959c5a schema:name pubmed_id
99 schema:value 30287860
100 rdf:type schema:PropertyValue
101 N723a6f58690d4214bf8a37d9b1b54a96 schema:issueNumber 1
102 rdf:type schema:PublicationIssue
103 N8e6369e75aff445b831b6458e7584018 rdf:first sg:person.01362056435.32
104 rdf:rest rdf:nil
105 N900f63fa51494f18a6f886f74cd3a15c schema:name doi
106 schema:value 10.1038/s41598-018-33261-w
107 rdf:type schema:PropertyValue
108 N95958608568a468885d32962f530b242 schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N9ad53c29ffe84c7d8b41e403fd84a3d0 schema:name Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
111 rdf:type schema:Organization
112 Na55f7001fdf6463c9611ef21479ed87d schema:name dimensions_id
113 schema:value pub.1107306617
114 rdf:type schema:PropertyValue
115 Nb9c40b427a3b45bf926dc56d7940de5c schema:name nlm_unique_id
116 schema:value 101563288
117 rdf:type schema:PropertyValue
118 Ne9e940f238554dd7a2a2f39758aa036a rdf:first sg:person.01106456741.46
119 rdf:rest N2fa9f7a184f844c98d0bf79edd5dd9c3
120 Nf0fc8366369f423fb03b580da89da55c rdf:first sg:person.014574554603.64
121 rdf:rest Ne9e940f238554dd7a2a2f39758aa036a
122 Nf6d930dd72b44644a3d542efab902559 schema:name readcube_id
123 schema:value adecb80a39b1878b24695289ea0c035fed599eddff6a9b32860fe2b963bddedc
124 rdf:type schema:PropertyValue
125 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
126 schema:name Biological Sciences
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
129 schema:name Genetics
130 rdf:type schema:DefinedTerm
131 sg:journal.1045337 schema:issn 2045-2322
132 schema:name Scientific Reports
133 rdf:type schema:Periodical
134 sg:person.01106456741.46 schema:affiliation N9ad53c29ffe84c7d8b41e403fd84a3d0
135 schema:familyName Drancourt
136 schema:givenName Michel
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01106456741.46
138 rdf:type schema:Person
139 sg:person.01160017665.68 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
140 schema:familyName Tuller
141 schema:givenName Tamir
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160017665.68
143 rdf:type schema:Person
144 sg:person.01362056435.32 schema:affiliation https://www.grid.ac/institutes/grid.4444.0
145 schema:familyName Pontarotti
146 schema:givenName Pierre
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362056435.32
148 rdf:type schema:Person
149 sg:person.014574554603.64 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
150 schema:familyName Panda
151 schema:givenName Arup
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014574554603.64
153 rdf:type schema:Person
154 sg:pub.10.1007/82_2012_279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040078850
155 https://doi.org/10.1007/82_2012_279
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/31159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035640914
158 https://doi.org/10.1038/31159
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/35012500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035273826
161 https://doi.org/10.1038/35012500
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/ng1686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050371590
164 https://doi.org/10.1038/ng1686
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nrg2386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002840749
167 https://doi.org/10.1038/nrg2386
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nrg3962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007956667
170 https://doi.org/10.1038/nrg3962
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nrmicro2077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027294472
173 https://doi.org/10.1038/nrmicro2077
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1471-2148-15-s1-s2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000914039
176 https://doi.org/10.1186/1471-2148-15-s1-s2
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1471-2148-9-196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036000858
179 https://doi.org/10.1186/1471-2148-9-196
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/1471-2164-13-120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014005457
182 https://doi.org/10.1186/1471-2164-13-120
183 rdf:type schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1079013381 schema:CreativeWork
185 https://doi.org/10.1016/j.cub.2011.01.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011985167
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.fbr.2011.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046136721
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.jmb.2015.11.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017501175
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.tim.2010.12.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034136556
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/s0065-2911(09)05502-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034131942
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/s0168-9525(01)02529-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029303398
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0966-842x(01)02282-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1003757095
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s2214-109x(14)70361-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044129965
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.0605709103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030609228
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.1737230100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020982895
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1073/pnas.96.7.3801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028400086
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1093/bioinformatics/btq315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040086465
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/bioinformatics/btr088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041309983
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/bioinformatics/btu033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000848409
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/molbev/msj120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049276831
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/molbev/msm111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011521639
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/molbev/msp077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028540883
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/molbev/msw046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043817932
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/nar/29.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029793403
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/nar/gkh340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025846396
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/nar/gkn656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022543597
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1093/nar/gkn668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003127501
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/nar/gkr054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022986735
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/nar/gkr313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033348794
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/nar/gks1219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017730157
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/nar/gks485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006999522
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/nar/gkv1070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010056536
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/gkv1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003229314
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/nar/gkw1004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000159214
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/nar/gkw1009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012034321
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/nar/gkw1070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000624882
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/sysbio/syp103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044222785
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1099/ijs.0.63094-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060386332
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1101/cshperspect.a018036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060406944
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1101/gr.1224503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000505228
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1111/j.1574-6976.2000.tb00550.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043630083
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1111/j.1574-6976.2006.00041.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005266984
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1111/j.1574-6976.2008.00136.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020360104
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1111/j.1574-6976.2011.00292.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013179409
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1128/aac.01310-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007546945
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1128/microbiolspec.mgm2-0022-2013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062731258
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1139/w06-001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013073133
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1146/annurev-phyto-102313-050127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006689470
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1146/annurev.genet.37.050503.084247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000856355
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1146/annurev.micro.55.1.709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020062045
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1155/2016/4387461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037978327
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1371/journal.pcbi.0010056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004964006
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1371/journal.pcbi.1004095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002994949
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1371/journal.pgen.0030138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010680353
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1371/journal.pone.0005660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024899071
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1371/journal.ppat.0010005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047201941
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1371/journal.ppat.1003419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012631216
288 rdf:type schema:CreativeWork
289 https://doi.org/10.3389/fmicb.2016.00173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026042853
290 rdf:type schema:CreativeWork
291 https://doi.org/10.3390/ph5111210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001421135
292 rdf:type schema:CreativeWork
293 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
294 schema:name Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
295 Department of Biomedical Engineering, Tel-Aviv University, 69978, Ramat Aviv, Israel
296 rdf:type schema:Organization
297 https://www.grid.ac/institutes/grid.4444.0 schema:alternateName French National Centre for Scientific Research
298 schema:name Aix-Marseille-Univ., IRD, MEPHI, Institut Hospitalo-Universitaire (IHU) Méditerranée Infection, Marseille, France
299 CNRS, Marseille, France
300 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...