Humanization of Antibodies using a Statistical Inference Approach View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Alejandro Clavero-Álvarez, Tomas Di Mambro, Sergio Perez-Gaviro, Mauro Magnani, Pierpaolo Bruscolini

ABSTRACT

Antibody humanization is a key step in the preclinical phase of the development of therapeutic antibodies, originally developed and tested in non-human models (most typically, in mouse). The standard technique of Complementarity-Determining Regions (CDR) grafting into human Framework Regions of germline sequences has some important drawbacks, in that the resulting sequences often need further back-mutations to ensure functionality and/or stability. Here we propose a new method to characterize the statistical distribution of the sequences of the variable regions of human antibodies, that takes into account phenotypical correlations between pairs of residues, both within and between chains. We define a "humanness score" of a sequence, comparing its performance in distinguishing human from murine sequences, with that of some alternative scores in the literature. We also compare the score with the experimental immunogenicity of clinically used antibodies. Finally, we use the humanness score as an optimization function and perform a search in the sequence space, starting from different murine sequences and keeping the CDR regions unchanged. Our results show that our humanness score outperforms other methods in sequence classification, and the optimization protocol is able to generate humanized sequences that are recognized as human by standard homology modelling tools. More... »

PAGES

14820

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-32986-y

DOI

http://dx.doi.org/10.1038/s41598-018-32986-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107306572

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30287940


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Zaragoza", 
          "id": "https://www.grid.ac/institutes/grid.11205.37", 
          "name": [
            "Departamento de F\u00edsica Te\u00f3rica, Universidad de Zaragoza, 50009, Zaragoza, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clavero-\u00c1lvarez", 
        "givenName": "Alejandro", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Urbino", 
          "id": "https://www.grid.ac/institutes/grid.12711.34", 
          "name": [
            "Department of Biomolecular Sciences, University of Urbino \u201cCarlo Bo\u201d, Urbino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Di Mambro", 
        "givenName": "Tomas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zaragoza", 
          "id": "https://www.grid.ac/institutes/grid.11205.37", 
          "name": [
            "Centro Universitario de la Defensa, 50090, Zaragoza, Spain", 
            "Instituto de Biocomputaci\u00f3n y F\u00edsica de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018, Zaragoza, Spain", 
            "Departamento de F\u00edsica Te\u00f3rica, Universidad de Zaragoza, 50009, Zaragoza, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perez-Gaviro", 
        "givenName": "Sergio", 
        "id": "sg:person.01076215613.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076215613.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Urbino", 
          "id": "https://www.grid.ac/institutes/grid.12711.34", 
          "name": [
            "Department of Biomolecular Sciences, University of Urbino \u201cCarlo Bo\u201d, Urbino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Magnani", 
        "givenName": "Mauro", 
        "id": "sg:person.0752252542.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752252542.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Zaragoza", 
          "id": "https://www.grid.ac/institutes/grid.11205.37", 
          "name": [
            "Instituto de Biocomputaci\u00f3n y F\u00edsica de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018, Zaragoza, Spain", 
            "Departamento de F\u00edsica Te\u00f3rica, Universidad de Zaragoza, 50009, Zaragoza, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruscolini", 
        "givenName": "Pierpaolo", 
        "id": "sg:person.0615003405.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615003405.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1186/1471-2105-11-568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001814252", 
          "https://doi.org/10.1186/1471-2105-11-568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv552", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003917560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2007.02.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005015144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fimmu.2013.00302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007775509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jmr.2527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014126513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0092721", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015558096"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1742-4658.2011.08417.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020258187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molimm.2006.09.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022047417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004870", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022250116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clim.2009.01.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022465935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0076909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022821636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.9.755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024610917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/biot.201400083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027043864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/gzn070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029931764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030541462"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1111471108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032324644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkj067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035890801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0045595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037093538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2001.4662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037442639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkt1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040268839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043603670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2005.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044437247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2005.01.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044437247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045659894", 
          "https://doi.org/10.1038/srep27985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045956112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6750-13-55", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048765591", 
          "https://doi.org/10.1186/1472-6750-13-55"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01144-3_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049488614", 
          "https://doi.org/10.1007/978-3-642-01144-3_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-01144-3_21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049488614", 
          "https://doi.org/10.1007/978-3-642-01144-3_21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkn316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051706958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19420862.2015.1076600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058413323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/mabs.2.3.11641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072305558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/mabs.28612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072305765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/self.1.4.13904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072310788"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Antibody humanization is a key step in the preclinical phase of the development of therapeutic antibodies, originally developed and tested in non-human models (most typically, in mouse). The standard technique of Complementarity-Determining Regions (CDR) grafting into human Framework Regions of germline sequences has some important drawbacks, in that the resulting sequences often need further back-mutations to ensure functionality and/or stability. Here we propose a new method to characterize the statistical distribution of the sequences of the variable regions of human antibodies, that takes into account phenotypical correlations between pairs of residues, both within and between chains. We define a \"humanness score\" of a sequence, comparing its performance in distinguishing human from murine sequences, with that of some alternative scores in the literature. We also compare the score with the experimental immunogenicity of clinically used antibodies. Finally, we use the humanness score as an optimization function and perform a search in the sequence space, starting from different murine sequences and keeping the CDR regions unchanged. Our results show that our humanness score outperforms other methods in sequence classification, and the optimization protocol is able to generate humanized sequences that are recognized as human by standard homology modelling tools.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-32986-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Humanization of Antibodies using a Statistical Inference Approach", 
    "pagination": "14820", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "61fe67998ef8b31357d81cbf3891af152046f069ee983b0f5e6d2a286f0bb2f2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30287940"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-32986-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107306572"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-32986-y", 
      "https://app.dimensions.ai/details/publication/pub.1107306572"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-32986-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-32986-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-32986-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-32986-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-32986-y'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-32986-y schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N38c607e1fe5545c0a3fd33440a3f2b56
4 schema:citation sg:pub.10.1007/978-3-642-01144-3_21
5 sg:pub.10.1038/srep27985
6 sg:pub.10.1186/1471-2105-11-568
7 sg:pub.10.1186/1472-6750-13-55
8 https://doi.org/10.1002/biot.201400083
9 https://doi.org/10.1002/jmr.2527
10 https://doi.org/10.1006/jmbi.2001.4662
11 https://doi.org/10.1016/j.clim.2009.01.009
12 https://doi.org/10.1016/j.jmb.2007.02.100
13 https://doi.org/10.1016/j.molimm.2006.09.029
14 https://doi.org/10.1016/j.ymeth.2005.01.001
15 https://doi.org/10.1073/pnas.1111471108
16 https://doi.org/10.1080/19420862.2015.1076600
17 https://doi.org/10.1093/bioinformatics/14.9.755
18 https://doi.org/10.1093/bioinformatics/btv552
19 https://doi.org/10.1093/nar/gkj067
20 https://doi.org/10.1093/nar/gkm958
21 https://doi.org/10.1093/nar/gkn316
22 https://doi.org/10.1093/nar/gkr806
23 https://doi.org/10.1093/nar/gkt1068
24 https://doi.org/10.1093/protein/gzn070
25 https://doi.org/10.1111/j.1742-4658.2011.08417.x
26 https://doi.org/10.1371/journal.pcbi.1000048
27 https://doi.org/10.1371/journal.pcbi.1004870
28 https://doi.org/10.1371/journal.pone.0045595
29 https://doi.org/10.1371/journal.pone.0076909
30 https://doi.org/10.1371/journal.pone.0092721
31 https://doi.org/10.3389/fimmu.2013.00302
32 https://doi.org/10.4161/mabs.2.3.11641
33 https://doi.org/10.4161/mabs.28612
34 https://doi.org/10.4161/self.1.4.13904
35 schema:datePublished 2018-12
36 schema:datePublishedReg 2018-12-01
37 schema:description Antibody humanization is a key step in the preclinical phase of the development of therapeutic antibodies, originally developed and tested in non-human models (most typically, in mouse). The standard technique of Complementarity-Determining Regions (CDR) grafting into human Framework Regions of germline sequences has some important drawbacks, in that the resulting sequences often need further back-mutations to ensure functionality and/or stability. Here we propose a new method to characterize the statistical distribution of the sequences of the variable regions of human antibodies, that takes into account phenotypical correlations between pairs of residues, both within and between chains. We define a "humanness score" of a sequence, comparing its performance in distinguishing human from murine sequences, with that of some alternative scores in the literature. We also compare the score with the experimental immunogenicity of clinically used antibodies. Finally, we use the humanness score as an optimization function and perform a search in the sequence space, starting from different murine sequences and keeping the CDR regions unchanged. Our results show that our humanness score outperforms other methods in sequence classification, and the optimization protocol is able to generate humanized sequences that are recognized as human by standard homology modelling tools.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N0c79ffb878994598a68460c61dd511ee
42 Ncd5750464c9d4b0ba3d9cbd7dfcdc6a0
43 sg:journal.1045337
44 schema:name Humanization of Antibodies using a Statistical Inference Approach
45 schema:pagination 14820
46 schema:productId N0fa6cad1ad0744fdacc78555f7849419
47 N1f9e41aa2bed40f2ae6050ca97421688
48 N830bf746ce9a41a69501d311b03bad12
49 N90d25b31d4d647c3a9d771aced9fcb99
50 Nd38f98f2ac044c35a5ab9e66a81c000d
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107306572
52 https://doi.org/10.1038/s41598-018-32986-y
53 schema:sdDatePublished 2019-04-10T14:24
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher Nb8e0ae5788074a1a9ea590244c93d404
56 schema:url https://www.nature.com/articles/s41598-018-32986-y
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0c79ffb878994598a68460c61dd511ee schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N0fa6cad1ad0744fdacc78555f7849419 schema:name doi
63 schema:value 10.1038/s41598-018-32986-y
64 rdf:type schema:PropertyValue
65 N1f9e41aa2bed40f2ae6050ca97421688 schema:name pubmed_id
66 schema:value 30287940
67 rdf:type schema:PropertyValue
68 N23555173619841ae9aa6484b066843c3 rdf:first N7d24aaba0c81423894406cc35cab03e6
69 rdf:rest Nc10925f8e4af47cb9865eda2a27d53eb
70 N38c607e1fe5545c0a3fd33440a3f2b56 rdf:first N9d04d320efc249a5a7868374d1ad46a0
71 rdf:rest N23555173619841ae9aa6484b066843c3
72 N432a3bc94e41458b80eb94e24b10833e rdf:first sg:person.0752252542.98
73 rdf:rest Ne434577a775c4691b2c9fbd97aae8f23
74 N7d24aaba0c81423894406cc35cab03e6 schema:affiliation https://www.grid.ac/institutes/grid.12711.34
75 schema:familyName Di Mambro
76 schema:givenName Tomas
77 rdf:type schema:Person
78 N830bf746ce9a41a69501d311b03bad12 schema:name dimensions_id
79 schema:value pub.1107306572
80 rdf:type schema:PropertyValue
81 N90d25b31d4d647c3a9d771aced9fcb99 schema:name readcube_id
82 schema:value 61fe67998ef8b31357d81cbf3891af152046f069ee983b0f5e6d2a286f0bb2f2
83 rdf:type schema:PropertyValue
84 N9d04d320efc249a5a7868374d1ad46a0 schema:affiliation https://www.grid.ac/institutes/grid.11205.37
85 schema:familyName Clavero-Álvarez
86 schema:givenName Alejandro
87 rdf:type schema:Person
88 Nb8e0ae5788074a1a9ea590244c93d404 schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 Nc10925f8e4af47cb9865eda2a27d53eb rdf:first sg:person.01076215613.38
91 rdf:rest N432a3bc94e41458b80eb94e24b10833e
92 Ncd5750464c9d4b0ba3d9cbd7dfcdc6a0 schema:volumeNumber 8
93 rdf:type schema:PublicationVolume
94 Nd38f98f2ac044c35a5ab9e66a81c000d schema:name nlm_unique_id
95 schema:value 101563288
96 rdf:type schema:PropertyValue
97 Ne434577a775c4691b2c9fbd97aae8f23 rdf:first sg:person.0615003405.06
98 rdf:rest rdf:nil
99 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
100 schema:name Mathematical Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
103 schema:name Applied Mathematics
104 rdf:type schema:DefinedTerm
105 sg:journal.1045337 schema:issn 2045-2322
106 schema:name Scientific Reports
107 rdf:type schema:Periodical
108 sg:person.01076215613.38 schema:affiliation https://www.grid.ac/institutes/grid.11205.37
109 schema:familyName Perez-Gaviro
110 schema:givenName Sergio
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076215613.38
112 rdf:type schema:Person
113 sg:person.0615003405.06 schema:affiliation https://www.grid.ac/institutes/grid.11205.37
114 schema:familyName Bruscolini
115 schema:givenName Pierpaolo
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615003405.06
117 rdf:type schema:Person
118 sg:person.0752252542.98 schema:affiliation https://www.grid.ac/institutes/grid.12711.34
119 schema:familyName Magnani
120 schema:givenName Mauro
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752252542.98
122 rdf:type schema:Person
123 sg:pub.10.1007/978-3-642-01144-3_21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049488614
124 https://doi.org/10.1007/978-3-642-01144-3_21
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/srep27985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045659894
127 https://doi.org/10.1038/srep27985
128 rdf:type schema:CreativeWork
129 sg:pub.10.1186/1471-2105-11-568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001814252
130 https://doi.org/10.1186/1471-2105-11-568
131 rdf:type schema:CreativeWork
132 sg:pub.10.1186/1472-6750-13-55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048765591
133 https://doi.org/10.1186/1472-6750-13-55
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1002/biot.201400083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027043864
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1002/jmr.2527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014126513
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1006/jmbi.2001.4662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037442639
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.clim.2009.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022465935
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jmb.2007.02.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005015144
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.molimm.2006.09.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022047417
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.ymeth.2005.01.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044437247
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1073/pnas.1111471108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032324644
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1080/19420862.2015.1076600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058413323
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1093/bioinformatics/14.9.755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024610917
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1093/bioinformatics/btv552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003917560
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1093/nar/gkj067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035890801
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1093/nar/gkm958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043603670
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/nar/gkn316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051706958
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/nar/gkr806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045956112
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1093/nar/gkt1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040268839
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1093/protein/gzn070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029931764
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/j.1742-4658.2011.08417.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020258187
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1371/journal.pcbi.1000048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030541462
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1371/journal.pcbi.1004870 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022250116
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1371/journal.pone.0045595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037093538
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1371/journal.pone.0076909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022821636
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1371/journal.pone.0092721 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015558096
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3389/fimmu.2013.00302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007775509
182 rdf:type schema:CreativeWork
183 https://doi.org/10.4161/mabs.2.3.11641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072305558
184 rdf:type schema:CreativeWork
185 https://doi.org/10.4161/mabs.28612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072305765
186 rdf:type schema:CreativeWork
187 https://doi.org/10.4161/self.1.4.13904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072310788
188 rdf:type schema:CreativeWork
189 https://www.grid.ac/institutes/grid.11205.37 schema:alternateName University of Zaragoza
190 schema:name Centro Universitario de la Defensa, 50090, Zaragoza, Spain
191 Departamento de Física Teórica, Universidad de Zaragoza, 50009, Zaragoza, Spain
192 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018, Zaragoza, Spain
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.12711.34 schema:alternateName University of Urbino
195 schema:name Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Urbino, Italy
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...