Assortative mixing in spatially-extended networks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-14

AUTHORS

Vladimir V. Makarov, Daniil V. Kirsanov, Nikita S. Frolov, Vladimir A. Maksimenko, Xuelong Li, Zhen Wang, Alexander E. Hramov, Stefano Boccaletti

ABSTRACT

We focus on spatially-extended networks during their transition from short-range connectivities to a scale-free structure expressed by heavy-tailed degree-distribution. In particular, a model is introduced for the generation of such graphs, which combines spatial growth and preferential attachment. In this model the transition to heterogeneous structures is always accompanied by a change in the graph's degree-degree correlation properties: while high assortativity levels characterize the dominance of short distance couplings, long-range connectivity structures are associated with small amounts of disassortativity. Our results allow to infer that a disassortative mixing is essential for establishing long-range links. We discuss also how our findings are consistent with recent experimental studies of 2-dimensional neuronal cultures. More... »

PAGES

13825

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-32160-4

DOI

http://dx.doi.org/10.1038/s41598-018-32160-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106921310

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30218078


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0905", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Civil Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Collection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Skin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Spatial Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Statistical Distributions", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "REC \u2018Artificial Intelligence Systems and Neurotechnology\u2019, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "REC \u2018Artificial Intelligence Systems and Neurotechnology\u2019, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Makarov", 
        "givenName": "Vladimir V.", 
        "id": "sg:person.014703640333.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703640333.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "REC \u2018Artificial Intelligence Systems and Neurotechnology\u2019, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "REC \u2018Artificial Intelligence Systems and Neurotechnology\u2019, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirsanov", 
        "givenName": "Daniil V.", 
        "id": "sg:person.010155450427.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155450427.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012 Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "REC \u2018Artificial Intelligence Systems and Neurotechnology\u2019, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia", 
            "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012 Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frolov", 
        "givenName": "Nikita S.", 
        "id": "sg:person.012601102011.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012601102011.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "REC \u2018Artificial Intelligence Systems and Neurotechnology\u2019, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.78837.33", 
          "name": [
            "REC \u2018Artificial Intelligence Systems and Neurotechnology\u2019, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maksimenko", 
        "givenName": "Vladimir A.", 
        "id": "sg:person.01250441670.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250441670.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi\u2019an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi\u2019an, 710119 Shaanxi China", 
          "id": "http://www.grid.ac/institutes/grid.458522.c", 
          "name": [
            "Xi\u2019an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi\u2019an, 710119 Shaanxi China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Xuelong", 
        "id": "sg:person.0706560705.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706560705.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi\u2019an, 710072 Shaanxi China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi\u2019an, 710072 Shaanxi China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhen", 
        "id": "sg:person.015461334571.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015461334571.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012 Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "REC \u2018Artificial Intelligence Systems and Neurotechnology\u2019, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia", 
            "Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012 Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hramov", 
        "givenName": "Alexander E.", 
        "id": "sg:person.0676765425.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676765425.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi\u2019an, 710072 Shaanxi China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy", 
            "Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi\u2019an, 710072 Shaanxi China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boccaletti", 
        "givenName": "Stefano", 
        "id": "sg:person.0763521661.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763521661.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/s41598-017-17576-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093156920", 
          "https://doi.org/10.1038/s41598-017-17576-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep05638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002165433", 
          "https://doi.org/10.1038/srep05638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013678266", 
          "https://doi.org/10.1038/srep00296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004953014", 
          "https://doi.org/10.1038/nrn2575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10867-009-9156-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015041508", 
          "https://doi.org/10.1007/s10867-009-9156-x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-14", 
    "datePublishedReg": "2018-09-14", 
    "description": "We focus on spatially-extended networks during their transition from short-range connectivities to a scale-free structure expressed by heavy-tailed degree-distribution. In particular, a model is introduced for the generation of such graphs, which combines spatial growth and preferential attachment. In this model the transition to heterogeneous structures is always accompanied by a change in the graph's degree-degree correlation properties: while high assortativity levels characterize the dominance of short distance couplings, long-range connectivity structures are associated with small amounts of disassortativity. Our results allow to infer that a disassortative mixing is essential for establishing long-range links. We discuss also how our findings are consistent with recent experimental studies of 2-dimensional neuronal cultures.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-32160-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6959303", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "scale-free structure", 
      "long-range links", 
      "such graphs", 
      "connectivity structure", 
      "correlation properties", 
      "disassortative mixing", 
      "preferential attachment", 
      "spatial growth", 
      "heterogeneous structure", 
      "recent experimental studies", 
      "disassortativity", 
      "short-range connectivity", 
      "graph", 
      "short-distance coupling", 
      "model", 
      "network", 
      "transition", 
      "structure", 
      "coupling", 
      "properties", 
      "experimental study", 
      "connectivity", 
      "mixing", 
      "results", 
      "link", 
      "generation", 
      "small amount", 
      "dominance", 
      "amount", 
      "study", 
      "growth", 
      "changes", 
      "levels", 
      "findings", 
      "attachment", 
      "neuronal cultures", 
      "culture", 
      "graph's degree-degree correlation properties", 
      "'s degree-degree correlation properties", 
      "high assortativity levels", 
      "assortativity levels", 
      "distance couplings", 
      "long-range connectivity structures"
    ], 
    "name": "Assortative mixing in spatially-extended networks", 
    "pagination": "13825", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106921310"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-32160-4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30218078"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-32160-4", 
      "https://app.dimensions.ai/details/publication/pub.1106921310"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_766.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-32160-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-32160-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-32160-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-32160-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-32160-4'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      22 PREDICATES      82 URIs      68 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-32160-4 schema:about N16d823a2cf0a4c66b1fc7a59428d9151
2 N502eac57d84b45fbbafc0fe6838092a1
3 N981d7845662f42aa8fbb2ecd7cb6856e
4 N9d595e1d34274e6cb2be50054b9eb175
5 Nba820fe916224ed2abb4b62dd4bf236f
6 Nbe05fb5bef664505b85ff87035e5950c
7 Nd67808092faf4d3fbcffcf820d0c1e78
8 anzsrc-for:09
9 anzsrc-for:0905
10 schema:author N2247570597db46aa93877a1c4e2a7e9c
11 schema:citation sg:pub.10.1007/s10867-009-9156-x
12 sg:pub.10.1038/30918
13 sg:pub.10.1038/nrn2575
14 sg:pub.10.1038/s41598-017-17576-8
15 sg:pub.10.1038/srep00296
16 sg:pub.10.1038/srep05638
17 schema:datePublished 2018-09-14
18 schema:datePublishedReg 2018-09-14
19 schema:description We focus on spatially-extended networks during their transition from short-range connectivities to a scale-free structure expressed by heavy-tailed degree-distribution. In particular, a model is introduced for the generation of such graphs, which combines spatial growth and preferential attachment. In this model the transition to heterogeneous structures is always accompanied by a change in the graph's degree-degree correlation properties: while high assortativity levels characterize the dominance of short distance couplings, long-range connectivity structures are associated with small amounts of disassortativity. Our results allow to infer that a disassortative mixing is essential for establishing long-range links. We discuss also how our findings are consistent with recent experimental studies of 2-dimensional neuronal cultures.
20 schema:genre article
21 schema:inLanguage en
22 schema:isAccessibleForFree true
23 schema:isPartOf N1823b47c0e994a62b52db8f541f7e3da
24 N4c215a56efd14cf4ae57ddb6451e8838
25 sg:journal.1045337
26 schema:keywords 's degree-degree correlation properties
27 amount
28 assortativity levels
29 attachment
30 changes
31 connectivity
32 connectivity structure
33 correlation properties
34 coupling
35 culture
36 disassortative mixing
37 disassortativity
38 distance couplings
39 dominance
40 experimental study
41 findings
42 generation
43 graph
44 graph's degree-degree correlation properties
45 growth
46 heterogeneous structure
47 high assortativity levels
48 levels
49 link
50 long-range connectivity structures
51 long-range links
52 mixing
53 model
54 network
55 neuronal cultures
56 preferential attachment
57 properties
58 recent experimental studies
59 results
60 scale-free structure
61 short-distance coupling
62 short-range connectivity
63 small amount
64 spatial growth
65 structure
66 study
67 such graphs
68 transition
69 schema:name Assortative mixing in spatially-extended networks
70 schema:pagination 13825
71 schema:productId N02536fedc64d47d1b19d219554954157
72 N29116ec38da44fb3ad1cbf425e6d2985
73 N3627708df1284f3c9704318f0e9b4ed0
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106921310
75 https://doi.org/10.1038/s41598-018-32160-4
76 schema:sdDatePublished 2021-11-01T18:33
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N693976d1aa5442648dd5f58ca2e51212
79 schema:url https://doi.org/10.1038/s41598-018-32160-4
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N02536fedc64d47d1b19d219554954157 schema:name dimensions_id
84 schema:value pub.1106921310
85 rdf:type schema:PropertyValue
86 N1222aad7961a43a3aed5467d35e45d3b rdf:first sg:person.010155450427.70
87 rdf:rest N2661445baf1a487f98051b2bf701845c
88 N16d823a2cf0a4c66b1fc7a59428d9151 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Data Collection
90 rdf:type schema:DefinedTerm
91 N1823b47c0e994a62b52db8f541f7e3da schema:issueNumber 1
92 rdf:type schema:PublicationIssue
93 N2247570597db46aa93877a1c4e2a7e9c rdf:first sg:person.014703640333.03
94 rdf:rest N1222aad7961a43a3aed5467d35e45d3b
95 N2661445baf1a487f98051b2bf701845c rdf:first sg:person.012601102011.11
96 rdf:rest Nd6292af32c9041398a480d88b5496520
97 N29116ec38da44fb3ad1cbf425e6d2985 schema:name pubmed_id
98 schema:value 30218078
99 rdf:type schema:PropertyValue
100 N2dfacde2380f4c4d82031bdd367b6253 rdf:first sg:person.015461334571.27
101 rdf:rest N72912a66fe9141f3a5c53273f852c297
102 N3627708df1284f3c9704318f0e9b4ed0 schema:name doi
103 schema:value 10.1038/s41598-018-32160-4
104 rdf:type schema:PropertyValue
105 N4c215a56efd14cf4ae57ddb6451e8838 schema:volumeNumber 8
106 rdf:type schema:PublicationVolume
107 N502eac57d84b45fbbafc0fe6838092a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Models, Biological
109 rdf:type schema:DefinedTerm
110 N693976d1aa5442648dd5f58ca2e51212 schema:name Springer Nature - SN SciGraph project
111 rdf:type schema:Organization
112 N72912a66fe9141f3a5c53273f852c297 rdf:first sg:person.0676765425.00
113 rdf:rest Nf29e0251bbe14e13a992849f07f121b7
114 N981d7845662f42aa8fbb2ecd7cb6856e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Spatial Analysis
116 rdf:type schema:DefinedTerm
117 N9d595e1d34274e6cb2be50054b9eb175 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Neurons
119 rdf:type schema:DefinedTerm
120 Nba820fe916224ed2abb4b62dd4bf236f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Statistical Distributions
122 rdf:type schema:DefinedTerm
123 Nbe05fb5bef664505b85ff87035e5950c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Skin
125 rdf:type schema:DefinedTerm
126 Nd6292af32c9041398a480d88b5496520 rdf:first sg:person.01250441670.74
127 rdf:rest Nffc3bf62f0544daba32db85590297be4
128 Nd67808092faf4d3fbcffcf820d0c1e78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Computer Simulation
130 rdf:type schema:DefinedTerm
131 Nf29e0251bbe14e13a992849f07f121b7 rdf:first sg:person.0763521661.41
132 rdf:rest rdf:nil
133 Nffc3bf62f0544daba32db85590297be4 rdf:first sg:person.0706560705.56
134 rdf:rest N2dfacde2380f4c4d82031bdd367b6253
135 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
136 schema:name Engineering
137 rdf:type schema:DefinedTerm
138 anzsrc-for:0905 schema:inDefinedTermSet anzsrc-for:
139 schema:name Civil Engineering
140 rdf:type schema:DefinedTerm
141 sg:grant.6959303 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-32160-4
142 rdf:type schema:MonetaryGrant
143 sg:journal.1045337 schema:issn 2045-2322
144 schema:name Scientific Reports
145 schema:publisher Springer Nature
146 rdf:type schema:Periodical
147 sg:person.010155450427.70 schema:affiliation grid-institutes:grid.78837.33
148 schema:familyName Kirsanov
149 schema:givenName Daniil V.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010155450427.70
151 rdf:type schema:Person
152 sg:person.01250441670.74 schema:affiliation grid-institutes:grid.78837.33
153 schema:familyName Maksimenko
154 schema:givenName Vladimir A.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250441670.74
156 rdf:type schema:Person
157 sg:person.012601102011.11 schema:affiliation grid-institutes:grid.446088.6
158 schema:familyName Frolov
159 schema:givenName Nikita S.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012601102011.11
161 rdf:type schema:Person
162 sg:person.014703640333.03 schema:affiliation grid-institutes:grid.78837.33
163 schema:familyName Makarov
164 schema:givenName Vladimir V.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014703640333.03
166 rdf:type schema:Person
167 sg:person.015461334571.27 schema:affiliation grid-institutes:grid.440588.5
168 schema:familyName Wang
169 schema:givenName Zhen
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015461334571.27
171 rdf:type schema:Person
172 sg:person.0676765425.00 schema:affiliation grid-institutes:grid.446088.6
173 schema:familyName Hramov
174 schema:givenName Alexander E.
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0676765425.00
176 rdf:type schema:Person
177 sg:person.0706560705.56 schema:affiliation grid-institutes:grid.458522.c
178 schema:familyName Li
179 schema:givenName Xuelong
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706560705.56
181 rdf:type schema:Person
182 sg:person.0763521661.41 schema:affiliation grid-institutes:grid.440588.5
183 schema:familyName Boccaletti
184 schema:givenName Stefano
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763521661.41
186 rdf:type schema:Person
187 sg:pub.10.1007/s10867-009-9156-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015041508
188 https://doi.org/10.1007/s10867-009-9156-x
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
191 https://doi.org/10.1038/30918
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nrn2575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004953014
194 https://doi.org/10.1038/nrn2575
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/s41598-017-17576-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093156920
197 https://doi.org/10.1038/s41598-017-17576-8
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/srep00296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013678266
200 https://doi.org/10.1038/srep00296
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/srep05638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002165433
203 https://doi.org/10.1038/srep05638
204 rdf:type schema:CreativeWork
205 grid-institutes:grid.440588.5 schema:alternateName School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
206 Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
207 schema:name CNR-Institute of Complex Systems, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
208 School of Mechanical Engineering and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
209 Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi’an, 710072 Shaanxi China
210 rdf:type schema:Organization
211 grid-institutes:grid.446088.6 schema:alternateName Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012 Saratov, Russia
212 schema:name Faculty of Nonlinear Processes, Saratov State University, Astrakhanskaja str. 83, 410012 Saratov, Russia
213 REC ‘Artificial Intelligence Systems and Neurotechnology’, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia
214 rdf:type schema:Organization
215 grid-institutes:grid.458522.c schema:alternateName Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, 710119 Shaanxi China
216 schema:name Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an, 710119 Shaanxi China
217 rdf:type schema:Organization
218 grid-institutes:grid.78837.33 schema:alternateName REC ‘Artificial Intelligence Systems and Neurotechnology’, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia
219 schema:name REC ‘Artificial Intelligence Systems and Neurotechnology’, Yurij Gagarin State Technical University of Saratov, Polytechnicheskaja str 77, 410054 Saratov, Russia
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...