EEG patterns of self-paced movement imaginations towards externally-cued and internally-selected targets View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-06

AUTHORS

Joana Pereira, Andreea Ioana Sburlea, Gernot R. Müller-Putz

ABSTRACT

In this study, we investigate the neurophysiological signature of the interacting processes which lead to a single reach-and-grasp movement imagination (MI). While performing this task, the human healthy participants could either define their movement targets according to an external cue, or through an internal selection process. After defining their target, they could start the MI whenever they wanted. We recorded high density electroencephalographic (EEG) activity and investigated two neural correlates: the event-related potentials (ERPs) associated with the target selection, which reflect the perceptual and cognitive processes prior to the MI, and the movement-related cortical potentials (MRCPs), associated with the planning of the self-paced MI. We found differences in frontal and parietal areas between the late ERP components related to the internally-driven selection and the externally-cued process. Furthermore, we could reliably estimate the MI onset of the self-paced task. Next, we extracted MRCP features around the MI onset to train classifiers of movement vs. rest directly on self-paced MI data. We attained performance significantly higher than chance level for both time-locked and asynchronous classification. These findings contribute to the development of more intuitive brain-computer interfaces in which movement targets are defined internally and the movements are self-paced. More... »

PAGES

13394

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-31673-2

DOI

http://dx.doi.org/10.1038/s41598-018-31673-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106476142

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30190543


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain-Computer Interfaces", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Electroencephalography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evoked Potentials", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imagination", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Parietal Lobe", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Neural Engineering, Graz University of Technology, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Neural Engineering, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pereira", 
        "givenName": "Joana", 
        "id": "sg:person.01157503431.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157503431.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Neural Engineering, Graz University of Technology, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Neural Engineering, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sburlea", 
        "givenName": "Andreea Ioana", 
        "id": "sg:person.01120767031.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120767031.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Neural Engineering, Graz University of Technology, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.410413.3", 
          "name": [
            "Institute of Neural Engineering, Graz University of Technology, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "M\u00fcller-Putz", 
        "givenName": "Gernot R.", 
        "id": "sg:person.0631232046.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631232046.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4615-0294-4_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028335290", 
          "https://doi.org/10.1007/978-1-4615-0294-4_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-012-1018-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049878643", 
          "https://doi.org/10.1007/s11517-012-1018-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-0189-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047067545", 
          "https://doi.org/10.1007/978-1-4615-0189-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1475-925x-9-45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004223453", 
          "https://doi.org/10.1186/1475-925x-9-45"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11517-008-0345-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010548694", 
          "https://doi.org/10.1007/s11517-008-0345-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-06", 
    "datePublishedReg": "2018-09-06", 
    "description": "In this study, we investigate the neurophysiological signature of the interacting processes which lead to a single reach-and-grasp movement imagination (MI). While performing this task, the human healthy participants could either define their movement targets according to an external cue, or through an internal selection process. After defining their target, they could start the MI whenever they wanted. We recorded high density electroencephalographic (EEG) activity and investigated two neural correlates: the event-related potentials (ERPs) associated with the target selection, which reflect the perceptual and cognitive processes prior to the MI, and the movement-related cortical potentials (MRCPs), associated with the planning of the self-paced MI. We found differences in frontal and parietal areas between the late ERP components related to the internally-driven selection and the externally-cued process. Furthermore, we could reliably estimate the MI onset of the self-paced task. Next, we extracted MRCP features around the MI onset to train classifiers of movement vs. rest directly on self-paced MI data. We attained performance significantly higher than chance level for both time-locked and asynchronous classification. These findings contribute to the development of more intuitive brain-computer interfaces in which movement targets are defined internally and the movements are self-paced.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-31673-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5495586", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "event-related potentials", 
      "movement targets", 
      "intuitive brain-computer interfaces", 
      "movement imagination", 
      "late ERP components", 
      "self-paced task", 
      "movement-related cortical potentials", 
      "cognitive processes", 
      "neural correlates", 
      "ERP components", 
      "neurophysiological signatures", 
      "chance level", 
      "parietal areas", 
      "healthy participants", 
      "brain-computer interface", 
      "external cues", 
      "electroencephalographic activity", 
      "cortical potentials", 
      "target selection", 
      "internal selection process", 
      "MRCP features", 
      "asynchronous classification", 
      "task", 
      "cues", 
      "MI onset", 
      "EEG patterns", 
      "imagination", 
      "participants", 
      "correlates", 
      "single reach", 
      "selection process", 
      "findings", 
      "movement", 
      "process", 
      "MI data", 
      "target", 
      "performance", 
      "onset", 
      "differences", 
      "classifier", 
      "study", 
      "patterns", 
      "planning", 
      "development", 
      "selection", 
      "features", 
      "levels", 
      "potential", 
      "components", 
      "data", 
      "activity", 
      "classification", 
      "reach", 
      "area", 
      "signatures", 
      "interface", 
      "grasp movement imagination", 
      "human healthy participants", 
      "high density electroencephalographic (EEG) activity", 
      "density electroencephalographic (EEG) activity", 
      "self-paced MI", 
      "classifiers of movement", 
      "self-paced MI data"
    ], 
    "name": "EEG patterns of self-paced movement imaginations towards externally-cued and internally-selected targets", 
    "pagination": "13394", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106476142"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-31673-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30190543"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-31673-2", 
      "https://app.dimensions.ai/details/publication/pub.1106476142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_775.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-31673-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31673-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31673-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31673-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31673-2'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      22 PREDICATES      105 URIs      92 LITERALS      18 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-31673-2 schema:about N120ecf5de4f64ff4b71d794ea7986f57
2 N18d1f2465958401ba189968ba8615641
3 N390c7c7d02bb46c4a28aadd53440759f
4 N3c0682a18ce0417bb0051e1aa2129d46
5 N60eec1e886da47e484b63a2e83d0ab38
6 Nc0a0c7d6c56240d7bdb567b61ba7d797
7 Ncb0ab6197444402383b3a6ec3740f87e
8 Ncdf3da32f24f42c69566aa4eaa69702a
9 Nd90a628783ce4ee5b928f1727596abe1
10 Ne02146eb5dcc4ea99d3ee23db2e98e08
11 Nf0c6c7e640a9406c8f3f7916f43fc100
12 anzsrc-for:17
13 anzsrc-for:1701
14 schema:author Nf2f39c82bcf048c2a8713aa6334801c7
15 schema:citation sg:pub.10.1007/978-1-4615-0189-3
16 sg:pub.10.1007/978-1-4615-0294-4_5
17 sg:pub.10.1007/s11517-008-0345-8
18 sg:pub.10.1007/s11517-012-1018-1
19 sg:pub.10.1186/1475-925x-9-45
20 schema:datePublished 2018-09-06
21 schema:datePublishedReg 2018-09-06
22 schema:description In this study, we investigate the neurophysiological signature of the interacting processes which lead to a single reach-and-grasp movement imagination (MI). While performing this task, the human healthy participants could either define their movement targets according to an external cue, or through an internal selection process. After defining their target, they could start the MI whenever they wanted. We recorded high density electroencephalographic (EEG) activity and investigated two neural correlates: the event-related potentials (ERPs) associated with the target selection, which reflect the perceptual and cognitive processes prior to the MI, and the movement-related cortical potentials (MRCPs), associated with the planning of the self-paced MI. We found differences in frontal and parietal areas between the late ERP components related to the internally-driven selection and the externally-cued process. Furthermore, we could reliably estimate the MI onset of the self-paced task. Next, we extracted MRCP features around the MI onset to train classifiers of movement vs. rest directly on self-paced MI data. We attained performance significantly higher than chance level for both time-locked and asynchronous classification. These findings contribute to the development of more intuitive brain-computer interfaces in which movement targets are defined internally and the movements are self-paced.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N4a91dca24ec24c7ca656350767b785a6
27 N90bfe000723243a59650f4f9bdf7eb02
28 sg:journal.1045337
29 schema:keywords EEG patterns
30 ERP components
31 MI data
32 MI onset
33 MRCP features
34 activity
35 area
36 asynchronous classification
37 brain-computer interface
38 chance level
39 classification
40 classifier
41 classifiers of movement
42 cognitive processes
43 components
44 correlates
45 cortical potentials
46 cues
47 data
48 density electroencephalographic (EEG) activity
49 development
50 differences
51 electroencephalographic activity
52 event-related potentials
53 external cues
54 features
55 findings
56 grasp movement imagination
57 healthy participants
58 high density electroencephalographic (EEG) activity
59 human healthy participants
60 imagination
61 interface
62 internal selection process
63 intuitive brain-computer interfaces
64 late ERP components
65 levels
66 movement
67 movement imagination
68 movement targets
69 movement-related cortical potentials
70 neural correlates
71 neurophysiological signatures
72 onset
73 parietal areas
74 participants
75 patterns
76 performance
77 planning
78 potential
79 process
80 reach
81 selection
82 selection process
83 self-paced MI
84 self-paced MI data
85 self-paced task
86 signatures
87 single reach
88 study
89 target
90 target selection
91 task
92 schema:name EEG patterns of self-paced movement imaginations towards externally-cued and internally-selected targets
93 schema:pagination 13394
94 schema:productId N376b75b287d744f3be028b766bd0eb2b
95 N40ccd78a746d4d4890e45a9d197e63a5
96 N5403d47de69b49d090c79d1be558bf39
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106476142
98 https://doi.org/10.1038/s41598-018-31673-2
99 schema:sdDatePublished 2021-11-01T18:32
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N20d208abc5f7432d8ad22dac2b3dc0bf
102 schema:url https://doi.org/10.1038/s41598-018-31673-2
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N120ecf5de4f64ff4b71d794ea7986f57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Cognition
108 rdf:type schema:DefinedTerm
109 N18d1f2465958401ba189968ba8615641 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Imagination
111 rdf:type schema:DefinedTerm
112 N20d208abc5f7432d8ad22dac2b3dc0bf schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N376b75b287d744f3be028b766bd0eb2b schema:name doi
115 schema:value 10.1038/s41598-018-31673-2
116 rdf:type schema:PropertyValue
117 N390c7c7d02bb46c4a28aadd53440759f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Adult
119 rdf:type schema:DefinedTerm
120 N3c0682a18ce0417bb0051e1aa2129d46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Electroencephalography
122 rdf:type schema:DefinedTerm
123 N40ccd78a746d4d4890e45a9d197e63a5 schema:name dimensions_id
124 schema:value pub.1106476142
125 rdf:type schema:PropertyValue
126 N4a91dca24ec24c7ca656350767b785a6 schema:volumeNumber 8
127 rdf:type schema:PublicationVolume
128 N5403d47de69b49d090c79d1be558bf39 schema:name pubmed_id
129 schema:value 30190543
130 rdf:type schema:PropertyValue
131 N60eec1e886da47e484b63a2e83d0ab38 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Movement
133 rdf:type schema:DefinedTerm
134 N8f0f3ffbe6e24f61a1ead132184794cb rdf:first sg:person.0631232046.28
135 rdf:rest rdf:nil
136 N90bfe000723243a59650f4f9bdf7eb02 schema:issueNumber 1
137 rdf:type schema:PublicationIssue
138 Nc0a0c7d6c56240d7bdb567b61ba7d797 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Male
140 rdf:type schema:DefinedTerm
141 Ncb0ab6197444402383b3a6ec3740f87e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Humans
143 rdf:type schema:DefinedTerm
144 Ncdf3da32f24f42c69566aa4eaa69702a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Female
146 rdf:type schema:DefinedTerm
147 Nd2990bf8d108439b9fc33cd5b28b94d4 rdf:first sg:person.01120767031.40
148 rdf:rest N8f0f3ffbe6e24f61a1ead132184794cb
149 Nd90a628783ce4ee5b928f1727596abe1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Brain-Computer Interfaces
151 rdf:type schema:DefinedTerm
152 Ne02146eb5dcc4ea99d3ee23db2e98e08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Evoked Potentials
154 rdf:type schema:DefinedTerm
155 Nf0c6c7e640a9406c8f3f7916f43fc100 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Parietal Lobe
157 rdf:type schema:DefinedTerm
158 Nf2f39c82bcf048c2a8713aa6334801c7 rdf:first sg:person.01157503431.83
159 rdf:rest Nd2990bf8d108439b9fc33cd5b28b94d4
160 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
161 schema:name Psychology and Cognitive Sciences
162 rdf:type schema:DefinedTerm
163 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
164 schema:name Psychology
165 rdf:type schema:DefinedTerm
166 sg:grant.5495586 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-31673-2
167 rdf:type schema:MonetaryGrant
168 sg:journal.1045337 schema:issn 2045-2322
169 schema:name Scientific Reports
170 schema:publisher Springer Nature
171 rdf:type schema:Periodical
172 sg:person.01120767031.40 schema:affiliation grid-institutes:grid.410413.3
173 schema:familyName Sburlea
174 schema:givenName Andreea Ioana
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120767031.40
176 rdf:type schema:Person
177 sg:person.01157503431.83 schema:affiliation grid-institutes:grid.410413.3
178 schema:familyName Pereira
179 schema:givenName Joana
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157503431.83
181 rdf:type schema:Person
182 sg:person.0631232046.28 schema:affiliation grid-institutes:grid.410413.3
183 schema:familyName Müller-Putz
184 schema:givenName Gernot R.
185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0631232046.28
186 rdf:type schema:Person
187 sg:pub.10.1007/978-1-4615-0189-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047067545
188 https://doi.org/10.1007/978-1-4615-0189-3
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/978-1-4615-0294-4_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028335290
191 https://doi.org/10.1007/978-1-4615-0294-4_5
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s11517-008-0345-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010548694
194 https://doi.org/10.1007/s11517-008-0345-8
195 rdf:type schema:CreativeWork
196 sg:pub.10.1007/s11517-012-1018-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049878643
197 https://doi.org/10.1007/s11517-012-1018-1
198 rdf:type schema:CreativeWork
199 sg:pub.10.1186/1475-925x-9-45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004223453
200 https://doi.org/10.1186/1475-925x-9-45
201 rdf:type schema:CreativeWork
202 grid-institutes:grid.410413.3 schema:alternateName Institute of Neural Engineering, Graz University of Technology, Graz, Austria
203 schema:name Institute of Neural Engineering, Graz University of Technology, Graz, Austria
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...