Interannual variability of leaf area index of an evergreen conifer stand was affected by carry-over effects from recent climate conditions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Akihiro Sumida, Tsutomu Watanabe, Tomiyasu Miyaura

ABSTRACT

Despite the relevance of leaf area index (LAI) to forest productivity, few studies have focused on the interannual variability of LAI of an evergreen stand and its relationship with stand growth and meteorological factors. We estimated the change in LAI of an evergreen conifer (Chamaecyparis obtusa) stand over 19 years from a dataset using allometric methods. The LAI varied between 7.1 and 8.8 m2 m-2, with a 95% confidence interval of <1.1 m2 m-2 over the 19 years. This LAI range was maintained such that the gradual increase in leaf area (LA) of the largest trees counterbalanced the gradual loss in LA of the smallest trees. Meanwhile, more trees showed a temporary decrease in LA in years with low summer precipitation. The LAI and current-year mean temperature for July and August (TJA) were weakly correlated, whereas the correlation coefficient increased (r = 0.93) when LAI was correlated with the moving average TJA over the previous 6 years, which agreed with the estimated turnover time of canopy foliage. The annual stem biomass growth rate was significantly positively correlated with summer precipitation, but not with LAI. These results will be useful for refining models in studies on forest growth and global climate change. More... »

PAGES

13590

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-31672-3

DOI

http://dx.doi.org/10.1038/s41598-018-31672-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106707850

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30206246


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0705", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Forestry Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hokkaido University", 
          "id": "https://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Institute of Low Temperature Science, Hokkaido University, N19W8, 060-0819, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sumida", 
        "givenName": "Akihiro", 
        "id": "sg:person.015437107071.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437107071.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hokkaido University", 
          "id": "https://www.grid.ac/institutes/grid.39158.36", 
          "name": [
            "Institute of Low Temperature Science, Hokkaido University, N19W8, 060-0819, Sapporo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Tsutomu", 
        "id": "sg:person.014464610631.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014464610631.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ryukoku University", 
          "id": "https://www.grid.ac/institutes/grid.440926.d", 
          "name": [
            "Faculty of Science and Technology, Ryukoku University, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miyaura", 
        "givenName": "Tomiyasu", 
        "id": "sg:person.01120352440.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120352440.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.flora.2013.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001038566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x97-058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001242127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/8.4.399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004963024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2343/geochemj.38.77", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005376792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11258-006-9127-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007854854", 
          "https://doi.org/10.1007/s11258-006-9127-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11258-006-9127-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007854854", 
          "https://doi.org/10.1007/s11258-006-9127-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agrformet.2008.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008077814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10021-011-9451-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008510527", 
          "https://doi.org/10.1007/s10021-011-9451-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hyp.5668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010775681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(99)00061-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013676145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10265-009-0270-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013966530", 
          "https://doi.org/10.1007/s10265-009-0270-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10265-009-0270-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013966530", 
          "https://doi.org/10.1007/s10265-009-0270-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecolmodel.2006.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014973835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/gcb.12223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015032261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2011.2270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017607107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbi.2015.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018511553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.agwat.2008.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018517873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1127(94)03485-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019786081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/geb.12133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020790523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1466-822x.2003.00026.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021066579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.02893.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021608107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2009.02893.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021608107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1941257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023643134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0609448103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023838177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10310-009-0146-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024755242", 
          "https://doi.org/10.1007/s10310-009-0146-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/18.8-9.521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026489232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.es.21.110190.002231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031621775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1365-2745.12268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031703047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(99)00056-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032847249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1051-0761(2002)012[1286:deoafp]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034088652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x76-007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035270722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(1997)078[0335:nmapih]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038528940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpq042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038667728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpq042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038667728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpr143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038747873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.2003.00768.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039545961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2435.2008.01388.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039809342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-3040.2001.00711.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041353969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2015.07.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042572844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.energy.28.050302.105515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045052487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x09-179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045614135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/x05-055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045848028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-arplant-050213-040054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050861932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tps127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052062913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mci050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052833722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14214/sf.174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067211670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1934713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069658898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1936225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069660284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1937343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069661334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2258284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069851573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-19271-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100351914", 
          "https://doi.org/10.1038/s41598-018-19271-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Despite the relevance of leaf area index (LAI) to forest productivity, few studies have focused on the interannual variability of LAI of an evergreen stand and its relationship with stand growth and meteorological factors. We estimated the change in LAI of an evergreen conifer (Chamaecyparis obtusa) stand over 19 years from a dataset using allometric methods. The LAI varied between 7.1 and 8.8\u2009m2\u2009m-2, with a 95% confidence interval of <1.1\u2009m2\u2009m-2 over the 19 years. This LAI range was maintained such that the gradual increase in leaf area (LA) of the largest trees counterbalanced the gradual loss in LA of the smallest trees. Meanwhile, more trees showed a temporary decrease in LA in years with low summer precipitation. The LAI and current-year mean temperature for July and August (TJA) were weakly correlated, whereas the correlation coefficient increased (r\u2009=\u20090.93) when LAI was correlated with the moving average TJA over the previous 6 years, which agreed with the estimated turnover time of canopy foliage. The annual stem biomass growth rate was significantly positively correlated with summer precipitation, but not with LAI. These results will be useful for refining models in studies on forest growth and global climate change.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-31672-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6080920", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6092698", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Interannual variability of leaf area index of an evergreen conifer stand was affected by carry-over effects from recent climate conditions", 
    "pagination": "13590", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d9111d3653311830b8a83728ed7cc13fd6746cde9b556106b64c1cf58f4ff572"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30206246"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-31672-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106707850"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-31672-3", 
      "https://app.dimensions.ai/details/publication/pub.1106707850"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-31672-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31672-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31672-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31672-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31672-3'


 

This table displays all metadata directly associated to this object as RDF triples.

235 TRIPLES      21 PREDICATES      76 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-31672-3 schema:about anzsrc-for:07
2 anzsrc-for:0705
3 schema:author N3cd4db5bc3724c8488c5d4137ceaedd1
4 schema:citation sg:pub.10.1007/s10021-011-9451-9
5 sg:pub.10.1007/s10265-009-0270-4
6 sg:pub.10.1007/s10310-009-0146-4
7 sg:pub.10.1007/s11258-006-9127-2
8 sg:pub.10.1038/s41598-018-19271-8
9 https://doi.org/10.1002/hyp.5668
10 https://doi.org/10.1016/0378-1127(94)03485-f
11 https://doi.org/10.1016/j.advwatres.2015.07.002
12 https://doi.org/10.1016/j.agrformet.2008.08.014
13 https://doi.org/10.1016/j.agwat.2008.02.007
14 https://doi.org/10.1016/j.ecolmodel.2006.09.006
15 https://doi.org/10.1016/j.flora.2013.09.004
16 https://doi.org/10.1016/j.pbi.2015.05.003
17 https://doi.org/10.1016/s0034-4257(99)00056-5
18 https://doi.org/10.1016/s0034-4257(99)00061-9
19 https://doi.org/10.1046/j.1365-3040.2001.00711.x
20 https://doi.org/10.1046/j.1466-822x.2003.00026.x
21 https://doi.org/10.1073/pnas.0609448103
22 https://doi.org/10.1093/aob/mci050
23 https://doi.org/10.1093/treephys/18.8-9.521
24 https://doi.org/10.1093/treephys/8.4.399
25 https://doi.org/10.1093/treephys/tpq042
26 https://doi.org/10.1093/treephys/tpr143
27 https://doi.org/10.1093/treephys/tps127
28 https://doi.org/10.1098/rspb.2011.2270
29 https://doi.org/10.1111/1365-2745.12268
30 https://doi.org/10.1111/gcb.12223
31 https://doi.org/10.1111/geb.12133
32 https://doi.org/10.1111/j.1365-2435.2008.01388.x
33 https://doi.org/10.1111/j.1469-8137.2009.02893.x
34 https://doi.org/10.1111/j.1529-8817.2003.00768.x
35 https://doi.org/10.1139/x05-055
36 https://doi.org/10.1139/x09-179
37 https://doi.org/10.1139/x76-007
38 https://doi.org/10.1139/x97-058
39 https://doi.org/10.1146/annurev-arplant-050213-040054
40 https://doi.org/10.1146/annurev.energy.28.050302.105515
41 https://doi.org/10.1146/annurev.es.21.110190.002231
42 https://doi.org/10.14214/sf.174
43 https://doi.org/10.1890/0012-9658(1997)078[0335:nmapih]2.0.co;2
44 https://doi.org/10.1890/1051-0761(2002)012[1286:deoafp]2.0.co;2
45 https://doi.org/10.2307/1934713
46 https://doi.org/10.2307/1936225
47 https://doi.org/10.2307/1937343
48 https://doi.org/10.2307/1941257
49 https://doi.org/10.2307/2258284
50 https://doi.org/10.2343/geochemj.38.77
51 schema:datePublished 2018-12
52 schema:datePublishedReg 2018-12-01
53 schema:description Despite the relevance of leaf area index (LAI) to forest productivity, few studies have focused on the interannual variability of LAI of an evergreen stand and its relationship with stand growth and meteorological factors. We estimated the change in LAI of an evergreen conifer (Chamaecyparis obtusa) stand over 19 years from a dataset using allometric methods. The LAI varied between 7.1 and 8.8 m<sup>2</sup> m<sup>-2</sup>, with a 95% confidence interval of &lt;1.1 m<sup>2</sup> m<sup>-2</sup> over the 19 years. This LAI range was maintained such that the gradual increase in leaf area (LA) of the largest trees counterbalanced the gradual loss in LA of the smallest trees. Meanwhile, more trees showed a temporary decrease in LA in years with low summer precipitation. The LAI and current-year mean temperature for July and August (T<sub>JA</sub>) were weakly correlated, whereas the correlation coefficient increased (r = 0.93) when LAI was correlated with the moving average T<sub>JA</sub> over the previous 6 years, which agreed with the estimated turnover time of canopy foliage. The annual stem biomass growth rate was significantly positively correlated with summer precipitation, but not with LAI. These results will be useful for refining models in studies on forest growth and global climate change.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf Nc60914c389124c61bb0b63dbf3d4a82d
58 Ncc0a8eef0aac4481885e6a0b346a0bf0
59 sg:journal.1045337
60 schema:name Interannual variability of leaf area index of an evergreen conifer stand was affected by carry-over effects from recent climate conditions
61 schema:pagination 13590
62 schema:productId N22761ef8a3644a9db28479ccff932faa
63 N43f6d59674194e5c93855ae312528d99
64 N84f97e8efcd24a48b1219bb1fc61788f
65 N9aa2dd9580bb442c8236b71a89676e8a
66 Nbf0e805434b941b8a4bcf0f23dc97114
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106707850
68 https://doi.org/10.1038/s41598-018-31672-3
69 schema:sdDatePublished 2019-04-10T16:56
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nd4c689564a944ec0b3cf167d41cf8ac5
72 schema:url https://www.nature.com/articles/s41598-018-31672-3
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N22761ef8a3644a9db28479ccff932faa schema:name nlm_unique_id
77 schema:value 101563288
78 rdf:type schema:PropertyValue
79 N3cd4db5bc3724c8488c5d4137ceaedd1 rdf:first sg:person.015437107071.27
80 rdf:rest N5514fcb2c575464fb987647e22acf01e
81 N43f6d59674194e5c93855ae312528d99 schema:name doi
82 schema:value 10.1038/s41598-018-31672-3
83 rdf:type schema:PropertyValue
84 N5514fcb2c575464fb987647e22acf01e rdf:first sg:person.014464610631.43
85 rdf:rest Nd1bcd3e7167340b8b92ea434b962e72d
86 N84f97e8efcd24a48b1219bb1fc61788f schema:name pubmed_id
87 schema:value 30206246
88 rdf:type schema:PropertyValue
89 N9aa2dd9580bb442c8236b71a89676e8a schema:name readcube_id
90 schema:value d9111d3653311830b8a83728ed7cc13fd6746cde9b556106b64c1cf58f4ff572
91 rdf:type schema:PropertyValue
92 Nbf0e805434b941b8a4bcf0f23dc97114 schema:name dimensions_id
93 schema:value pub.1106707850
94 rdf:type schema:PropertyValue
95 Nc60914c389124c61bb0b63dbf3d4a82d schema:issueNumber 1
96 rdf:type schema:PublicationIssue
97 Ncc0a8eef0aac4481885e6a0b346a0bf0 schema:volumeNumber 8
98 rdf:type schema:PublicationVolume
99 Nd1bcd3e7167340b8b92ea434b962e72d rdf:first sg:person.01120352440.06
100 rdf:rest rdf:nil
101 Nd4c689564a944ec0b3cf167d41cf8ac5 schema:name Springer Nature - SN SciGraph project
102 rdf:type schema:Organization
103 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
104 schema:name Agricultural and Veterinary Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0705 schema:inDefinedTermSet anzsrc-for:
107 schema:name Forestry Sciences
108 rdf:type schema:DefinedTerm
109 sg:grant.6080920 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-31672-3
110 rdf:type schema:MonetaryGrant
111 sg:grant.6092698 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-31672-3
112 rdf:type schema:MonetaryGrant
113 sg:journal.1045337 schema:issn 2045-2322
114 schema:name Scientific Reports
115 rdf:type schema:Periodical
116 sg:person.01120352440.06 schema:affiliation https://www.grid.ac/institutes/grid.440926.d
117 schema:familyName Miyaura
118 schema:givenName Tomiyasu
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120352440.06
120 rdf:type schema:Person
121 sg:person.014464610631.43 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
122 schema:familyName Watanabe
123 schema:givenName Tsutomu
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014464610631.43
125 rdf:type schema:Person
126 sg:person.015437107071.27 schema:affiliation https://www.grid.ac/institutes/grid.39158.36
127 schema:familyName Sumida
128 schema:givenName Akihiro
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015437107071.27
130 rdf:type schema:Person
131 sg:pub.10.1007/s10021-011-9451-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008510527
132 https://doi.org/10.1007/s10021-011-9451-9
133 rdf:type schema:CreativeWork
134 sg:pub.10.1007/s10265-009-0270-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013966530
135 https://doi.org/10.1007/s10265-009-0270-4
136 rdf:type schema:CreativeWork
137 sg:pub.10.1007/s10310-009-0146-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024755242
138 https://doi.org/10.1007/s10310-009-0146-4
139 rdf:type schema:CreativeWork
140 sg:pub.10.1007/s11258-006-9127-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007854854
141 https://doi.org/10.1007/s11258-006-9127-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/s41598-018-19271-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100351914
144 https://doi.org/10.1038/s41598-018-19271-8
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/hyp.5668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010775681
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/0378-1127(94)03485-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1019786081
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.advwatres.2015.07.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042572844
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.agrformet.2008.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008077814
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.agwat.2008.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018517873
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.ecolmodel.2006.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014973835
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.flora.2013.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001038566
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.pbi.2015.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018511553
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0034-4257(99)00056-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032847249
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0034-4257(99)00061-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013676145
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1046/j.1365-3040.2001.00711.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041353969
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1046/j.1466-822x.2003.00026.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021066579
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1073/pnas.0609448103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023838177
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/aob/mci050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052833722
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1093/treephys/18.8-9.521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026489232
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/treephys/8.4.399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004963024
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1093/treephys/tpq042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038667728
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1093/treephys/tpr143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038747873
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/treephys/tps127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052062913
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1098/rspb.2011.2270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017607107
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1111/1365-2745.12268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031703047
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1111/gcb.12223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015032261
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1111/geb.12133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020790523
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1111/j.1365-2435.2008.01388.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039809342
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1111/j.1469-8137.2009.02893.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021608107
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1111/j.1529-8817.2003.00768.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039545961
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1139/x05-055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045848028
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1139/x09-179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045614135
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1139/x76-007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035270722
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1139/x97-058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001242127
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1146/annurev-arplant-050213-040054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050861932
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1146/annurev.energy.28.050302.105515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045052487
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1146/annurev.es.21.110190.002231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031621775
211 rdf:type schema:CreativeWork
212 https://doi.org/10.14214/sf.174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067211670
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1890/0012-9658(1997)078[0335:nmapih]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038528940
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1890/1051-0761(2002)012[1286:deoafp]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034088652
217 rdf:type schema:CreativeWork
218 https://doi.org/10.2307/1934713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069658898
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2307/1936225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069660284
221 rdf:type schema:CreativeWork
222 https://doi.org/10.2307/1937343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069661334
223 rdf:type schema:CreativeWork
224 https://doi.org/10.2307/1941257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023643134
225 rdf:type schema:CreativeWork
226 https://doi.org/10.2307/2258284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069851573
227 rdf:type schema:CreativeWork
228 https://doi.org/10.2343/geochemj.38.77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005376792
229 rdf:type schema:CreativeWork
230 https://www.grid.ac/institutes/grid.39158.36 schema:alternateName Hokkaido University
231 schema:name Institute of Low Temperature Science, Hokkaido University, N19W8, 060-0819, Sapporo, Japan
232 rdf:type schema:Organization
233 https://www.grid.ac/institutes/grid.440926.d schema:alternateName Ryukoku University
234 schema:name Faculty of Science and Technology, Ryukoku University, Seta Oe-cho, 520-2194, Otsu, Shiga, Japan
235 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...