Rationally-engineered reproductive barriers using CRISPR & CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-09-03

AUTHORS

Andrew J. Waters, Paolo Capriotti, David C. A. Gaboriau, Philippos Aris Papathanos, Nikolai Windbichler

ABSTRACT

The ability to erect rationally-engineered reproductive barriers in animal or plant species promises to enable a number of biotechnological applications such as the creation of genetic firewalls, the containment of gene drives or novel population replacement and suppression strategies for genetic control. However, to date no experimental data exist that explores this concept in a multicellular organism. Here we examine the requirements for building artificial reproductive barriers in the metazoan model Drosophila melanogaster by combining CRISPR-based genome editing and transcriptional transactivation (CRISPRa) of the same loci. We directed 13 single guide RNAs (sgRNAs) to the promoters of 7 evolutionary conserved genes and used 11 drivers to conduct a misactivation screen. We identify dominant-lethal activators of the eve locus and find that they disrupt development by strongly activating eve outside its native spatio-temporal context. We employ the same set of sgRNAs to isolate, by genome editing, protective INDELs that render these loci resistant to transactivation without interfering with target gene function. When these sets of genetic components are combined we find that complete synthetic lethality, a prerequisite for most applications, is achievable using this approach. However, our results suggest a steep trade-off between the level and scope of dCas9 expression, the degree of genetic isolation achievable and the resulting impact on fly fitness. The genetic engineering strategy we present here allows the creation of single or multiple reproductive barriers and could be applied to other multicellular organisms such as disease vectors or transgenic organisms of economic importance. More... »

PAGES

13125

References to SciGraph publications

  • 2007-05-29. Using FlyAtlas to identify better Drosophila melanogaster models of human disease in NATURE GENETICS
  • 1980-10. Mutations affecting segment number and polarity in Drosophila in NATURE
  • 2014-12-10. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex in NATURE
  • 2015-12-16. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2016-09-05. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs in NATURE METHODS
  • 2015-04-06. Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers in NATURE BIOTECHNOLOGY
  • 2013-08-01. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering in NATURE BIOTECHNOLOGY
  • 2017-10-12. Engineering species-like barriers to sexual reproduction in NATURE COMMUNICATIONS
  • 2016-05-23. Comparative Analysis of Cas9 Activators Across Multiple Species in NATURE METHODS
  • 2013-09-01. Engineering the Caenorhabditis elegans Genome Using Cas9-Triggered Homologous Recombination in NATURE METHODS
  • 2015-03-02. Highly-efficient Cas9-mediated transcriptional programming in NATURE METHODS
  • 2013-08-20. Efficient genome editing in plants using a CRISPR/Cas system in CELL RESEARCH
  • 2016-08-03. A CRISPR-Cas9 sex-ratio distortion system for genetic control in SCIENTIFIC REPORTS
  • 2013-07-25. RNA-guided gene activation by CRISPR-Cas9-based transcription factors in NATURE METHODS
  • 2014-08-06. CRISPR-mediated direct mutation of cancer genes in the mouse liver in NATURE
  • 1985. The Embryonic Development of Drosophila melanogaster in NONE
  • 2002-08-27. Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila in NATURE CELL BIOLOGY
  • 2013-06-30. TALE-mediated modulation of transcriptional enhancers in NATURE METHODS
  • 2014-09-03. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation in NATURE BIOTECHNOLOGY
  • 2012-06-28. Fiji: an open-source platform for biological-image analysis in NATURE METHODS
  • 2014-09-25. CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos in NATURE PROTOCOLS
  • 2013-07-25. CRISPR RNA-guided activation of endogenous human genes in NATURE METHODS
  • 2008-03-02. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes in NATURE GENETICS
  • 2016-01-01. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae in NATURE BIOTECHNOLOGY
  • 2013-03-26. Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos in CELL RESEARCH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-31433-2

    DOI

    http://dx.doi.org/10.1038/s41598-018-31433-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106394418

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30177778


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Associated Protein 9", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drosophila melanogaster", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Editing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Lethal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Fitness", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Insect", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Homeodomain Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "INDEL Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Population Control", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Promoter Regions, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Guide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproductive Isolation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptional Activation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Waters", 
            "givenName": "Andrew J.", 
            "id": "sg:person.012130570010.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130570010.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Capriotti", 
            "givenName": "Paolo", 
            "id": "sg:person.012726150410.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726150410.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Facility for Imaging by Light Microscopy, NHLI, Imperial College London, South Kensington, London, SW7 2AZ UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Facility for Imaging by Light Microscopy, NHLI, Imperial College London, South Kensington, London, SW7 2AZ UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gaboriau", 
            "givenName": "David C. A.", 
            "id": "sg:person.0657672202.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657672202.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy", 
              "id": "http://www.grid.ac/institutes/grid.9027.c", 
              "name": [
                "Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Papathanos", 
            "givenName": "Philippos Aris", 
            "id": "sg:person.01314155075.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314155075.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ UK", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Windbichler", 
            "givenName": "Nikolai", 
            "id": "sg:person.01177726475.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177726475.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.2019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026706357", 
              "https://doi.org/10.1038/nmeth.2019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048954459", 
              "https://doi.org/10.1038/nature14136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep31139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051593162", 
              "https://doi.org/10.1038/srep31139"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng2049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051956862", 
              "https://doi.org/10.1038/ng2049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041659759", 
              "https://doi.org/10.1038/nbt.2675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3871", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013937698", 
              "https://doi.org/10.1038/nmeth.3871"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008312101", 
              "https://doi.org/10.1038/ncb842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01007-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092119334", 
              "https://doi.org/10.1038/s41467-017-01007-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031267114", 
              "https://doi.org/10.1038/nbt.3199"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/287795a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017279186", 
              "https://doi.org/10.1038/287795a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2013.45", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006654084", 
              "https://doi.org/10.1038/cr.2013.45"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033528408", 
              "https://doi.org/10.1038/nbt.3026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045683587", 
              "https://doi.org/10.1038/nmeth.2543"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030048072", 
              "https://doi.org/10.1038/nature13589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2013.114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045561746", 
              "https://doi.org/10.1038/cr.2013.114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049500416", 
              "https://doi.org/10.1038/nmeth.2598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001071534", 
              "https://doi.org/10.1038/ng.101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024354143", 
              "https://doi.org/10.1038/nmeth.2600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2014.171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046392021", 
              "https://doi.org/10.1038/nprot.2014.171"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-02454-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004983365", 
              "https://doi.org/10.1007/978-3-662-02454-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050804010", 
              "https://doi.org/10.1038/nmeth.2641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012287729", 
              "https://doi.org/10.1038/nbt.3439"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm.2015.2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052083740", 
              "https://doi.org/10.1038/nrm.2015.2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008897838", 
              "https://doi.org/10.1038/nmeth.3312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003377982", 
              "https://doi.org/10.1038/nmeth.3972"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-09-03", 
        "datePublishedReg": "2018-09-03", 
        "description": "The ability to erect rationally-engineered reproductive barriers in animal or plant species promises to enable a number of biotechnological applications such as the creation of genetic firewalls, the containment of gene drives or novel population replacement and suppression strategies for genetic control. However, to date no experimental data exist that explores this concept in a multicellular organism. Here we examine the requirements for building artificial reproductive barriers in the metazoan model Drosophila melanogaster by combining CRISPR-based genome editing and transcriptional transactivation (CRISPRa) of the same loci. We directed 13 single guide RNAs (sgRNAs) to the promoters of 7 evolutionary conserved genes and used 11 drivers to conduct a misactivation screen. We identify dominant-lethal activators of the eve locus and find that they disrupt development by strongly activating eve outside its native spatio-temporal context. We employ the same set of sgRNAs to isolate, by genome editing, protective INDELs that render these loci resistant to transactivation without interfering with target gene function. When these sets of genetic components are combined we find that complete synthetic lethality, a prerequisite for most applications, is achievable using this approach. However, our results suggest a steep trade-off between the level and scope of dCas9 expression, the degree of genetic isolation achievable and the resulting impact on fly fitness. The genetic engineering strategy we present here allows the creation of single or multiple reproductive barriers and could be applied to other multicellular organisms such as disease vectors or transgenic organisms of economic importance.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-018-31433-2", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3792998", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "single guide RNAs", 
          "reproductive barriers", 
          "multicellular organisms", 
          "Drosophila melanogaster", 
          "genome editing", 
          "multiple reproductive barriers", 
          "model Drosophila melanogaster", 
          "target gene function", 
          "genetic engineering strategies", 
          "genetic firewall", 
          "genetic isolation", 
          "species concept", 
          "gene function", 
          "plant species", 
          "fly fitness", 
          "transgenic organisms", 
          "transcriptional transactivation", 
          "guide RNA", 
          "gene drives", 
          "synthetic lethality", 
          "genetic control", 
          "biotechnological applications", 
          "same locus", 
          "disease vectors", 
          "population replacement", 
          "genetic component", 
          "economic importance", 
          "melanogaster", 
          "organisms", 
          "engineering strategies", 
          "CRISPR", 
          "transactivation", 
          "loci", 
          "editing", 
          "CRISPRa", 
          "indels", 
          "promoter", 
          "genes", 
          "RNA", 
          "species", 
          "activator", 
          "lethality", 
          "fitness", 
          "expression", 
          "screen", 
          "isolation", 
          "same set", 
          "animals", 
          "spatio-temporal context", 
          "vector", 
          "function", 
          "suppression strategy", 
          "prerequisite", 
          "ability", 
          "drivers", 
          "strategies", 
          "development", 
          "importance", 
          "components", 
          "levels", 
          "date", 
          "barriers", 
          "number", 
          "set", 
          "replacement", 
          "control", 
          "data", 
          "results", 
          "impact", 
          "degree", 
          "requirements", 
          "approach", 
          "context", 
          "applications", 
          "creation", 
          "Eve", 
          "concept", 
          "containment", 
          "experimental data", 
          "scope", 
          "most applications", 
          "evaluation", 
          "drive", 
          "firewall", 
          "novel population replacement", 
          "artificial reproductive barriers", 
          "metazoan model Drosophila melanogaster", 
          "misactivation screen", 
          "dominant-lethal activators", 
          "native spatio-temporal context", 
          "protective INDELs", 
          "complete synthetic lethality", 
          "synthetic species concept"
        ], 
        "name": "Rationally-engineered reproductive barriers using CRISPR & CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster", 
        "pagination": "13125", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106394418"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-31433-2"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30177778"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-31433-2", 
          "https://app.dimensions.ai/details/publication/pub.1106394418"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:33", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_781.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-018-31433-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31433-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31433-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31433-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31433-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    381 TRIPLES      22 PREDICATES      167 URIs      134 LITERALS      30 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-31433-2 schema:about N0c3f7c681db948e6a2b860068083905c
    2 N0ef1aac041d644b39c3c26477b0497ab
    3 N1ba8e36c7fed46129fb49323310f945c
    4 N54916389bfd342878844d36e1b530bf1
    5 N677793e6b65944a693bfe4d9c96fe421
    6 N6840d46a10344cd4b42adfc825469dd1
    7 N6904e78af9b1405caa7b9ac408d114c8
    8 N7163d4fd744e44e3b52bdba427567e4f
    9 N72ba7ef57f364ac8908fdb50971be82b
    10 N75b722c1f6cc4b87b765b02ec7e01329
    11 N7d78482405fc4e8e9b22ca2c89c1883d
    12 N80061dddc61945adb4deff88b411e802
    13 N92cecb63f96346389668102be83c268b
    14 N99bf9d76c427407188a3c6c511f976e2
    15 Na66cfaa75cc449e388a05f3ea872340f
    16 Nade0e0c4a658442cbfa2b44925a3bc84
    17 Nbab503aeb91c4d7897e7940e6f361087
    18 Nc8038ada4836417ea1e822bef06a9af0
    19 Nd3f69c8e4a94464f975db50eb1f0ff87
    20 Nd9ae235f42af47d28a20592ee8e11e7a
    21 Ndaa7411a46674368af013693e99da944
    22 Ndddb53685d8f4f3f80d985f01a1fc21f
    23 Ne382a260f3be4d28a19822f05b59e641
    24 anzsrc-for:06
    25 anzsrc-for:0604
    26 schema:author N7e8c529967044a9b8f705610187ce998
    27 schema:citation sg:pub.10.1007/978-3-662-02454-6
    28 sg:pub.10.1038/287795a0
    29 sg:pub.10.1038/cr.2013.114
    30 sg:pub.10.1038/cr.2013.45
    31 sg:pub.10.1038/nature13589
    32 sg:pub.10.1038/nature14136
    33 sg:pub.10.1038/nbt.2675
    34 sg:pub.10.1038/nbt.3026
    35 sg:pub.10.1038/nbt.3199
    36 sg:pub.10.1038/nbt.3439
    37 sg:pub.10.1038/ncb842
    38 sg:pub.10.1038/ng.101
    39 sg:pub.10.1038/ng2049
    40 sg:pub.10.1038/nmeth.2019
    41 sg:pub.10.1038/nmeth.2543
    42 sg:pub.10.1038/nmeth.2598
    43 sg:pub.10.1038/nmeth.2600
    44 sg:pub.10.1038/nmeth.2641
    45 sg:pub.10.1038/nmeth.3312
    46 sg:pub.10.1038/nmeth.3871
    47 sg:pub.10.1038/nmeth.3972
    48 sg:pub.10.1038/nprot.2014.171
    49 sg:pub.10.1038/nrm.2015.2
    50 sg:pub.10.1038/s41467-017-01007-3
    51 sg:pub.10.1038/srep31139
    52 schema:datePublished 2018-09-03
    53 schema:datePublishedReg 2018-09-03
    54 schema:description The ability to erect rationally-engineered reproductive barriers in animal or plant species promises to enable a number of biotechnological applications such as the creation of genetic firewalls, the containment of gene drives or novel population replacement and suppression strategies for genetic control. However, to date no experimental data exist that explores this concept in a multicellular organism. Here we examine the requirements for building artificial reproductive barriers in the metazoan model Drosophila melanogaster by combining CRISPR-based genome editing and transcriptional transactivation (CRISPRa) of the same loci. We directed 13 single guide RNAs (sgRNAs) to the promoters of 7 evolutionary conserved genes and used 11 drivers to conduct a misactivation screen. We identify dominant-lethal activators of the eve locus and find that they disrupt development by strongly activating eve outside its native spatio-temporal context. We employ the same set of sgRNAs to isolate, by genome editing, protective INDELs that render these loci resistant to transactivation without interfering with target gene function. When these sets of genetic components are combined we find that complete synthetic lethality, a prerequisite for most applications, is achievable using this approach. However, our results suggest a steep trade-off between the level and scope of dCas9 expression, the degree of genetic isolation achievable and the resulting impact on fly fitness. The genetic engineering strategy we present here allows the creation of single or multiple reproductive barriers and could be applied to other multicellular organisms such as disease vectors or transgenic organisms of economic importance.
    55 schema:genre article
    56 schema:inLanguage en
    57 schema:isAccessibleForFree true
    58 schema:isPartOf N4cd8470c140b4dd7ad2fe35f0476239a
    59 Na2ac6446747f4a939505be34e44371fe
    60 sg:journal.1045337
    61 schema:keywords CRISPR
    62 CRISPRa
    63 Drosophila melanogaster
    64 Eve
    65 RNA
    66 ability
    67 activator
    68 animals
    69 applications
    70 approach
    71 artificial reproductive barriers
    72 barriers
    73 biotechnological applications
    74 complete synthetic lethality
    75 components
    76 concept
    77 containment
    78 context
    79 control
    80 creation
    81 data
    82 date
    83 degree
    84 development
    85 disease vectors
    86 dominant-lethal activators
    87 drive
    88 drivers
    89 economic importance
    90 editing
    91 engineering strategies
    92 evaluation
    93 experimental data
    94 expression
    95 firewall
    96 fitness
    97 fly fitness
    98 function
    99 gene drives
    100 gene function
    101 genes
    102 genetic component
    103 genetic control
    104 genetic engineering strategies
    105 genetic firewall
    106 genetic isolation
    107 genome editing
    108 guide RNA
    109 impact
    110 importance
    111 indels
    112 isolation
    113 lethality
    114 levels
    115 loci
    116 melanogaster
    117 metazoan model Drosophila melanogaster
    118 misactivation screen
    119 model Drosophila melanogaster
    120 most applications
    121 multicellular organisms
    122 multiple reproductive barriers
    123 native spatio-temporal context
    124 novel population replacement
    125 number
    126 organisms
    127 plant species
    128 population replacement
    129 prerequisite
    130 promoter
    131 protective INDELs
    132 replacement
    133 reproductive barriers
    134 requirements
    135 results
    136 same locus
    137 same set
    138 scope
    139 screen
    140 set
    141 single guide RNAs
    142 spatio-temporal context
    143 species
    144 species concept
    145 strategies
    146 suppression strategy
    147 synthetic lethality
    148 synthetic species concept
    149 target gene function
    150 transactivation
    151 transcriptional transactivation
    152 transgenic organisms
    153 vector
    154 schema:name Rationally-engineered reproductive barriers using CRISPR & CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster
    155 schema:pagination 13125
    156 schema:productId Nd7f0e5f7d67147ef8a6677900931c6cf
    157 Ne3590013cb3a4fcb8d0f375a8a4b7129
    158 Nfb7064c4403249a8b16bdfe946afea23
    159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106394418
    160 https://doi.org/10.1038/s41598-018-31433-2
    161 schema:sdDatePublished 2021-11-01T18:33
    162 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    163 schema:sdPublisher Na12f54c55c7444b8b58eed7b7be064d9
    164 schema:url https://doi.org/10.1038/s41598-018-31433-2
    165 sgo:license sg:explorer/license/
    166 sgo:sdDataset articles
    167 rdf:type schema:ScholarlyArticle
    168 N0c3f7c681db948e6a2b860068083905c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Homeodomain Proteins
    170 rdf:type schema:DefinedTerm
    171 N0ef1aac041d644b39c3c26477b0497ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Genome, Insect
    173 rdf:type schema:DefinedTerm
    174 N16d3055792b44e71870ab34014300894 rdf:first sg:person.012726150410.59
    175 rdf:rest Nd6cbb7293f324019acbaf396741bd766
    176 N1ba8e36c7fed46129fb49323310f945c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    177 schema:name Transcription Factors
    178 rdf:type schema:DefinedTerm
    179 N4cd8470c140b4dd7ad2fe35f0476239a schema:issueNumber 1
    180 rdf:type schema:PublicationIssue
    181 N54916389bfd342878844d36e1b530bf1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Genetic Fitness
    183 rdf:type schema:DefinedTerm
    184 N677793e6b65944a693bfe4d9c96fe421 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Female
    186 rdf:type schema:DefinedTerm
    187 N6840d46a10344cd4b42adfc825469dd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name Population Control
    189 rdf:type schema:DefinedTerm
    190 N6904e78af9b1405caa7b9ac408d114c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Promoter Regions, Genetic
    192 rdf:type schema:DefinedTerm
    193 N7163d4fd744e44e3b52bdba427567e4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Base Sequence
    195 rdf:type schema:DefinedTerm
    196 N72ba7ef57f364ac8908fdb50971be82b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name CRISPR-Cas Systems
    198 rdf:type schema:DefinedTerm
    199 N75b722c1f6cc4b87b765b02ec7e01329 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Drosophila Proteins
    201 rdf:type schema:DefinedTerm
    202 N7d78482405fc4e8e9b22ca2c89c1883d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name RNA, Guide
    204 rdf:type schema:DefinedTerm
    205 N7e8c529967044a9b8f705610187ce998 rdf:first sg:person.012130570010.74
    206 rdf:rest N16d3055792b44e71870ab34014300894
    207 N80061dddc61945adb4deff88b411e802 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    208 schema:name Genes, Insect
    209 rdf:type schema:DefinedTerm
    210 N92cecb63f96346389668102be83c268b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    211 schema:name Reproductive Isolation
    212 rdf:type schema:DefinedTerm
    213 N99bf9d76c427407188a3c6c511f976e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Animals
    215 rdf:type schema:DefinedTerm
    216 Na12f54c55c7444b8b58eed7b7be064d9 schema:name Springer Nature - SN SciGraph project
    217 rdf:type schema:Organization
    218 Na2ac6446747f4a939505be34e44371fe schema:volumeNumber 8
    219 rdf:type schema:PublicationVolume
    220 Na66cfaa75cc449e388a05f3ea872340f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    221 schema:name Transcriptional Activation
    222 rdf:type schema:DefinedTerm
    223 Nade0e0c4a658442cbfa2b44925a3bc84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    224 schema:name INDEL Mutation
    225 rdf:type schema:DefinedTerm
    226 Nbab503aeb91c4d7897e7940e6f361087 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    227 schema:name Genes, Lethal
    228 rdf:type schema:DefinedTerm
    229 Nc8038ada4836417ea1e822bef06a9af0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    230 schema:name Drosophila melanogaster
    231 rdf:type schema:DefinedTerm
    232 Ncaa974724fdb40c1b4ab59c0ed18c67b rdf:first sg:person.01177726475.65
    233 rdf:rest rdf:nil
    234 Nd3f69c8e4a94464f975db50eb1f0ff87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    235 schema:name CRISPR-Associated Protein 9
    236 rdf:type schema:DefinedTerm
    237 Nd6cbb7293f324019acbaf396741bd766 rdf:first sg:person.0657672202.83
    238 rdf:rest Nf76cf35d6c57445a935c12cf989511e8
    239 Nd7f0e5f7d67147ef8a6677900931c6cf schema:name dimensions_id
    240 schema:value pub.1106394418
    241 rdf:type schema:PropertyValue
    242 Nd9ae235f42af47d28a20592ee8e11e7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    243 schema:name Genetic Loci
    244 rdf:type schema:DefinedTerm
    245 Ndaa7411a46674368af013693e99da944 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    246 schema:name Gene Editing
    247 rdf:type schema:DefinedTerm
    248 Ndddb53685d8f4f3f80d985f01a1fc21f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    249 schema:name Sequence Alignment
    250 rdf:type schema:DefinedTerm
    251 Ne3590013cb3a4fcb8d0f375a8a4b7129 schema:name doi
    252 schema:value 10.1038/s41598-018-31433-2
    253 rdf:type schema:PropertyValue
    254 Ne382a260f3be4d28a19822f05b59e641 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    255 schema:name Male
    256 rdf:type schema:DefinedTerm
    257 Nf76cf35d6c57445a935c12cf989511e8 rdf:first sg:person.01314155075.61
    258 rdf:rest Ncaa974724fdb40c1b4ab59c0ed18c67b
    259 Nfb7064c4403249a8b16bdfe946afea23 schema:name pubmed_id
    260 schema:value 30177778
    261 rdf:type schema:PropertyValue
    262 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    263 schema:name Biological Sciences
    264 rdf:type schema:DefinedTerm
    265 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    266 schema:name Genetics
    267 rdf:type schema:DefinedTerm
    268 sg:grant.3792998 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-31433-2
    269 rdf:type schema:MonetaryGrant
    270 sg:journal.1045337 schema:issn 2045-2322
    271 schema:name Scientific Reports
    272 schema:publisher Springer Nature
    273 rdf:type schema:Periodical
    274 sg:person.01177726475.65 schema:affiliation grid-institutes:None
    275 schema:familyName Windbichler
    276 schema:givenName Nikolai
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177726475.65
    278 rdf:type schema:Person
    279 sg:person.012130570010.74 schema:affiliation grid-institutes:None
    280 schema:familyName Waters
    281 schema:givenName Andrew J.
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012130570010.74
    283 rdf:type schema:Person
    284 sg:person.012726150410.59 schema:affiliation grid-institutes:None
    285 schema:familyName Capriotti
    286 schema:givenName Paolo
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012726150410.59
    288 rdf:type schema:Person
    289 sg:person.01314155075.61 schema:affiliation grid-institutes:grid.9027.c
    290 schema:familyName Papathanos
    291 schema:givenName Philippos Aris
    292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01314155075.61
    293 rdf:type schema:Person
    294 sg:person.0657672202.83 schema:affiliation grid-institutes:None
    295 schema:familyName Gaboriau
    296 schema:givenName David C. A.
    297 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657672202.83
    298 rdf:type schema:Person
    299 sg:pub.10.1007/978-3-662-02454-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004983365
    300 https://doi.org/10.1007/978-3-662-02454-6
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/287795a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017279186
    303 https://doi.org/10.1038/287795a0
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/cr.2013.114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045561746
    306 https://doi.org/10.1038/cr.2013.114
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/cr.2013.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006654084
    309 https://doi.org/10.1038/cr.2013.45
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nature13589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030048072
    312 https://doi.org/10.1038/nature13589
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1038/nature14136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048954459
    315 https://doi.org/10.1038/nature14136
    316 rdf:type schema:CreativeWork
    317 sg:pub.10.1038/nbt.2675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041659759
    318 https://doi.org/10.1038/nbt.2675
    319 rdf:type schema:CreativeWork
    320 sg:pub.10.1038/nbt.3026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033528408
    321 https://doi.org/10.1038/nbt.3026
    322 rdf:type schema:CreativeWork
    323 sg:pub.10.1038/nbt.3199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031267114
    324 https://doi.org/10.1038/nbt.3199
    325 rdf:type schema:CreativeWork
    326 sg:pub.10.1038/nbt.3439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012287729
    327 https://doi.org/10.1038/nbt.3439
    328 rdf:type schema:CreativeWork
    329 sg:pub.10.1038/ncb842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008312101
    330 https://doi.org/10.1038/ncb842
    331 rdf:type schema:CreativeWork
    332 sg:pub.10.1038/ng.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001071534
    333 https://doi.org/10.1038/ng.101
    334 rdf:type schema:CreativeWork
    335 sg:pub.10.1038/ng2049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051956862
    336 https://doi.org/10.1038/ng2049
    337 rdf:type schema:CreativeWork
    338 sg:pub.10.1038/nmeth.2019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026706357
    339 https://doi.org/10.1038/nmeth.2019
    340 rdf:type schema:CreativeWork
    341 sg:pub.10.1038/nmeth.2543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045683587
    342 https://doi.org/10.1038/nmeth.2543
    343 rdf:type schema:CreativeWork
    344 sg:pub.10.1038/nmeth.2598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049500416
    345 https://doi.org/10.1038/nmeth.2598
    346 rdf:type schema:CreativeWork
    347 sg:pub.10.1038/nmeth.2600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024354143
    348 https://doi.org/10.1038/nmeth.2600
    349 rdf:type schema:CreativeWork
    350 sg:pub.10.1038/nmeth.2641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050804010
    351 https://doi.org/10.1038/nmeth.2641
    352 rdf:type schema:CreativeWork
    353 sg:pub.10.1038/nmeth.3312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008897838
    354 https://doi.org/10.1038/nmeth.3312
    355 rdf:type schema:CreativeWork
    356 sg:pub.10.1038/nmeth.3871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013937698
    357 https://doi.org/10.1038/nmeth.3871
    358 rdf:type schema:CreativeWork
    359 sg:pub.10.1038/nmeth.3972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003377982
    360 https://doi.org/10.1038/nmeth.3972
    361 rdf:type schema:CreativeWork
    362 sg:pub.10.1038/nprot.2014.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046392021
    363 https://doi.org/10.1038/nprot.2014.171
    364 rdf:type schema:CreativeWork
    365 sg:pub.10.1038/nrm.2015.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052083740
    366 https://doi.org/10.1038/nrm.2015.2
    367 rdf:type schema:CreativeWork
    368 sg:pub.10.1038/s41467-017-01007-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092119334
    369 https://doi.org/10.1038/s41467-017-01007-3
    370 rdf:type schema:CreativeWork
    371 sg:pub.10.1038/srep31139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051593162
    372 https://doi.org/10.1038/srep31139
    373 rdf:type schema:CreativeWork
    374 grid-institutes:None schema:alternateName Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ UK
    375 Facility for Imaging by Light Microscopy, NHLI, Imperial College London, South Kensington, London, SW7 2AZ UK
    376 schema:name Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ UK
    377 Facility for Imaging by Light Microscopy, NHLI, Imperial College London, South Kensington, London, SW7 2AZ UK
    378 rdf:type schema:Organization
    379 grid-institutes:grid.9027.c schema:alternateName Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
    380 schema:name Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
    381 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...