Relation between switching time distribution and damping constant in magnetic nanostructure View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jung-Hwan Moon, Tae Young Lee, Chun-Yeol You

ABSTRACT

It is widely known that the switching time is determined by the thermal stability parameters and external perturbations such as magnetic field and/or spin polarized current in magnetic nano-structures. Since the thermal stability parameter and switching time are crucial values in the design of spin-transfer torque magnetic random access memory, the measurement of the switching time is important in the study of the switching behavior of ferromagnetic nano-structures. In this study, we focus on the distribution of the switching time. Within the limit of a large energy barrier, a simple analytical expression between damping constant and anisotropy field with switching time distribution is obtained and confirmed by numerically solving the Fokker-Planck equation. We show that the damping constant and anisotropy field can be extracted by measuring the full width half maximum of the switching time distribution in the magnetic nano-structure devices. Furthermore, the present method can be applied to not only single nano-structure, but also inhomogeneous nano-structure arrays. More... »

PAGES

13288

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-31299-4

DOI

http://dx.doi.org/10.1038/s41598-018-31299-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106432325

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30185899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samsung (South Korea)", 
          "id": "https://www.grid.ac/institutes/grid.419666.a", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, 02841, Seoul, Korea", 
            "Advanced Technology Development Team, Semiconductor R&D Center, Samsung Electronics Co., Ltd., 445-701, Gyeonggi-Do, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moon", 
        "givenName": "Jung-Hwan", 
        "id": "sg:person.0635703465.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635703465.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "SK Hynix (South Korea)", 
          "id": "https://www.grid.ac/institutes/grid.410908.4", 
          "name": [
            "New Memory Device and Process Integration Group, SK Hynix, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Tae Young", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Daegu Gyeongbuk Institute of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.417736.0", 
          "name": [
            "Department of Emerging Materials Science, DGIST, 42988, Daegu, Korea", 
            "Global Center for Bio-Convergence Spin System, DGIST, 42988, Daegu, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "You", 
        "givenName": "Chun-Yeol", 
        "id": "sg:person.015541201115.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015541201115.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.69.214409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001510339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.214409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001510339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4870917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002510561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(96)00062-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007328853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2668365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009375044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011614572", 
          "https://doi.org/10.1038/nmat2204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3532960", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012996854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.064430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017613031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.064430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017613031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.217202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019656098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.217202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019656098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4866186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021649142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.027204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022529040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.027204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022529040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.117601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023855753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.88.117601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023855753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cap.2015.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027176707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.02.090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038422632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.180415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047801156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.180415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047801156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3284515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057931126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3540361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057970579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3562136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057975023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3626593", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057987666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3676050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057998058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.370068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058004068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4737413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058055514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4795013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058070930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.101.1611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.101.1611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060417084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.130.1677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.130.1677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060426860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.214432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060653343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.94.214432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060653343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.63.457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060799934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.088302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.088302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.706609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061116711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.809133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061118319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/20.908465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061118849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lmag.2012.2232906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061361305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lmag.2016.2539256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061361411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2010.2041909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061682530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2012.2209122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061685080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.8.053002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073832258"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "It is widely known that the switching time is determined by the thermal stability parameters and external perturbations such as magnetic field and/or spin polarized current in magnetic nano-structures. Since the thermal stability parameter and switching time are crucial values in the design of spin-transfer torque magnetic random access memory, the measurement of the switching time is important in the study of the switching behavior of ferromagnetic nano-structures. In this study, we focus on the distribution of the switching time. Within the limit of a large energy barrier, a simple analytical expression between damping constant and anisotropy field with switching time distribution is obtained and confirmed by numerically solving the Fokker-Planck equation. We show that the damping constant and anisotropy field can be extracted by measuring the full width half maximum of the switching time distribution in the magnetic nano-structure devices. Furthermore, the present method can be applied to not only single nano-structure, but also inhomogeneous nano-structure arrays.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-31299-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7498096", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Relation between switching time distribution and damping constant in magnetic nanostructure", 
    "pagination": "13288", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f638ad3ed0639275c3439957fa151f63881bb1a2db13e7283b343b39b42677d8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30185899"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-31299-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106432325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-31299-4", 
      "https://app.dimensions.ai/details/publication/pub.1106432325"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-31299-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31299-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31299-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31299-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31299-4'


 

This table displays all metadata directly associated to this object as RDF triples.

197 TRIPLES      21 PREDICATES      64 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-31299-4 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nd58faad6ede34dd89d77488b5c49e901
4 schema:citation sg:pub.10.1038/nmat2204
5 https://doi.org/10.1016/0304-8853(96)00062-5
6 https://doi.org/10.1016/j.cap.2015.12.002
7 https://doi.org/10.1016/j.jmmm.2016.02.090
8 https://doi.org/10.1063/1.2668365
9 https://doi.org/10.1063/1.3284515
10 https://doi.org/10.1063/1.3532960
11 https://doi.org/10.1063/1.3540361
12 https://doi.org/10.1063/1.3562136
13 https://doi.org/10.1063/1.3626593
14 https://doi.org/10.1063/1.3676050
15 https://doi.org/10.1063/1.370068
16 https://doi.org/10.1063/1.4737413
17 https://doi.org/10.1063/1.4795013
18 https://doi.org/10.1063/1.4866186
19 https://doi.org/10.1063/1.4870917
20 https://doi.org/10.1103/physrev.101.1611
21 https://doi.org/10.1103/physrev.130.1677
22 https://doi.org/10.1103/physrevb.69.214409
23 https://doi.org/10.1103/physrevb.78.064430
24 https://doi.org/10.1103/physrevb.80.180415
25 https://doi.org/10.1103/physrevb.94.214432
26 https://doi.org/10.1103/physrevlett.108.217202
27 https://doi.org/10.1103/physrevlett.63.457
28 https://doi.org/10.1103/physrevlett.88.117601
29 https://doi.org/10.1103/physrevlett.92.088302
30 https://doi.org/10.1103/physrevlett.99.027204
31 https://doi.org/10.1109/20.706609
32 https://doi.org/10.1109/20.809133
33 https://doi.org/10.1109/20.908465
34 https://doi.org/10.1109/lmag.2012.2232906
35 https://doi.org/10.1109/lmag.2016.2539256
36 https://doi.org/10.1109/tmag.2010.2041909
37 https://doi.org/10.1109/tmag.2012.2209122
38 https://doi.org/10.7567/apex.8.053002
39 schema:datePublished 2018-12
40 schema:datePublishedReg 2018-12-01
41 schema:description It is widely known that the switching time is determined by the thermal stability parameters and external perturbations such as magnetic field and/or spin polarized current in magnetic nano-structures. Since the thermal stability parameter and switching time are crucial values in the design of spin-transfer torque magnetic random access memory, the measurement of the switching time is important in the study of the switching behavior of ferromagnetic nano-structures. In this study, we focus on the distribution of the switching time. Within the limit of a large energy barrier, a simple analytical expression between damping constant and anisotropy field with switching time distribution is obtained and confirmed by numerically solving the Fokker-Planck equation. We show that the damping constant and anisotropy field can be extracted by measuring the full width half maximum of the switching time distribution in the magnetic nano-structure devices. Furthermore, the present method can be applied to not only single nano-structure, but also inhomogeneous nano-structure arrays.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree true
45 schema:isPartOf N15b2988f2c7e468b88729ff3e5fc41bc
46 Nf0e601ce3839435abfa58a7c4233f2b4
47 sg:journal.1045337
48 schema:name Relation between switching time distribution and damping constant in magnetic nanostructure
49 schema:pagination 13288
50 schema:productId N0b9b86cfa5cd4530896b3d9757af0534
51 N15056023627149e2b54f750e434c5e1e
52 N4a037964525e4d90ab269d659826b6f4
53 N65eedd3eb832493e80b79f7e63d62c8f
54 Nf2fb95e658df43faacfe28278cc68953
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106432325
56 https://doi.org/10.1038/s41598-018-31299-4
57 schema:sdDatePublished 2019-04-10T22:42
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher Nd2511e7828d64466bc0de099d822c410
60 schema:url https://www.nature.com/articles/s41598-018-31299-4
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N0b9b86cfa5cd4530896b3d9757af0534 schema:name doi
65 schema:value 10.1038/s41598-018-31299-4
66 rdf:type schema:PropertyValue
67 N15056023627149e2b54f750e434c5e1e schema:name readcube_id
68 schema:value f638ad3ed0639275c3439957fa151f63881bb1a2db13e7283b343b39b42677d8
69 rdf:type schema:PropertyValue
70 N15b2988f2c7e468b88729ff3e5fc41bc schema:volumeNumber 8
71 rdf:type schema:PublicationVolume
72 N2df120844e1b4e3c94c2998cce814a1e schema:affiliation https://www.grid.ac/institutes/grid.410908.4
73 schema:familyName Lee
74 schema:givenName Tae Young
75 rdf:type schema:Person
76 N449b9690fc3f42db96b17feef4d92f8f rdf:first N2df120844e1b4e3c94c2998cce814a1e
77 rdf:rest N550cd788752c4b7a9fb3f1623f91f7dd
78 N4a037964525e4d90ab269d659826b6f4 schema:name nlm_unique_id
79 schema:value 101563288
80 rdf:type schema:PropertyValue
81 N550cd788752c4b7a9fb3f1623f91f7dd rdf:first sg:person.015541201115.50
82 rdf:rest rdf:nil
83 N65eedd3eb832493e80b79f7e63d62c8f schema:name pubmed_id
84 schema:value 30185899
85 rdf:type schema:PropertyValue
86 Nd2511e7828d64466bc0de099d822c410 schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nd58faad6ede34dd89d77488b5c49e901 rdf:first sg:person.0635703465.35
89 rdf:rest N449b9690fc3f42db96b17feef4d92f8f
90 Nf0e601ce3839435abfa58a7c4233f2b4 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 Nf2fb95e658df43faacfe28278cc68953 schema:name dimensions_id
93 schema:value pub.1106432325
94 rdf:type schema:PropertyValue
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
99 schema:name Other Physical Sciences
100 rdf:type schema:DefinedTerm
101 sg:grant.7498096 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-31299-4
102 rdf:type schema:MonetaryGrant
103 sg:journal.1045337 schema:issn 2045-2322
104 schema:name Scientific Reports
105 rdf:type schema:Periodical
106 sg:person.015541201115.50 schema:affiliation https://www.grid.ac/institutes/grid.417736.0
107 schema:familyName You
108 schema:givenName Chun-Yeol
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015541201115.50
110 rdf:type schema:Person
111 sg:person.0635703465.35 schema:affiliation https://www.grid.ac/institutes/grid.419666.a
112 schema:familyName Moon
113 schema:givenName Jung-Hwan
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635703465.35
115 rdf:type schema:Person
116 sg:pub.10.1038/nmat2204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011614572
117 https://doi.org/10.1038/nmat2204
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0304-8853(96)00062-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007328853
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.cap.2015.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027176707
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jmmm.2016.02.090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038422632
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.2668365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009375044
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.3284515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057931126
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.3532960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012996854
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.3540361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057970579
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.3562136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057975023
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.3626593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057987666
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.3676050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057998058
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.370068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058004068
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.4737413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058055514
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.4795013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058070930
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.4866186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021649142
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.4870917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002510561
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physrev.101.1611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060417084
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrev.130.1677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060426860
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.69.214409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001510339
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.78.064430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017613031
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.80.180415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047801156
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.94.214432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060653343
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.108.217202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019656098
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.63.457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060799934
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.88.117601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023855753
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.92.088302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827973
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.99.027204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022529040
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/20.706609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061116711
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/20.809133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061118319
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/20.908465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061118849
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/lmag.2012.2232906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061361305
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/lmag.2016.2539256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061361411
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tmag.2010.2041909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061682530
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tmag.2012.2209122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061685080
184 rdf:type schema:CreativeWork
185 https://doi.org/10.7567/apex.8.053002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073832258
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.410908.4 schema:alternateName SK Hynix (South Korea)
188 schema:name New Memory Device and Process Integration Group, SK Hynix, Korea
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.417736.0 schema:alternateName Daegu Gyeongbuk Institute of Science and Technology
191 schema:name Department of Emerging Materials Science, DGIST, 42988, Daegu, Korea
192 Global Center for Bio-Convergence Spin System, DGIST, 42988, Daegu, Korea
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.419666.a schema:alternateName Samsung (South Korea)
195 schema:name Advanced Technology Development Team, Semiconductor R&D Center, Samsung Electronics Co., Ltd., 445-701, Gyeonggi-Do, Korea
196 Department of Materials Science and Engineering, Korea University, 02841, Seoul, Korea
197 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...