Two-Dimensional MoxW1−xS2 Graded Alloys: Growth and Optical Properties View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Kevin Bogaert, Song Liu, Tao Liu, Na Guo, Chun Zhang, Silvija Gradečak, Slaven Garaj

ABSTRACT

Two-dimensional (2D) transition metal dichalcogenides can be alloyed by substitution at the metal atom site with negligible effect on lattice strain, but with significant influence on optical and electrical properties. In this work, we establish the relationship between composition and optical properties of the MoxW1-xS2 alloy by investigating the effect of continuously-varying composition on photoluminescence intensity. We developed a new process for growth of two-dimensional MoxW1-xS2 alloys that span nearly the full composition range along a single crystal, thus avoiding any sample-related heterogeneities. The graded alloy crystals were grown using a diffusion-based chemical vapor deposition (CVD) method that starts by synthesizing a WS2 crystal with a graded point defect distribution, followed by Mo alloying in the second stage. We show that point defects promote the diffusion and alloying, as confirmed by Raman and photoluminescence measurements, density functional theory calculations of the reaction path, and observation that no alloying occurs in CVD-treated exfoliated crystals with low defect density. We observe a significant dependence of the optical quantum yield as a function of the alloy composition reaching the maximum intensity for the equicompositional Mo0.5W0.5S2 alloy. Furthermore, we map the growth-induced strain distribution within the alloyed crystals to decouple composition and strain effects on optical properties: at the same composition, we observe significant decrease in quantum yield with induced strain. Our approach is generally applicable to other 2D materials as well as the optimization of other composition-dependent properties within a single crystal. More... »

PAGES

12889

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-31220-z

DOI

http://dx.doi.org/10.1038/s41598-018-31220-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106295137

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30150768


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
            "Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogaert", 
        "givenName": "Kevin", 
        "id": "sg:person.015143605325.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143605325.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Song", 
        "id": "sg:person.0765466024.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765466024.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore, Singapore", 
            "Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Tao", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore, Singapore", 
            "Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Na", 
        "id": "sg:person.01113537071.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113537071.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore, Singapore", 
            "Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore", 
            "Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chun", 
        "id": "sg:person.01072225733.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072225733.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Singapore-MIT Alliance for Research and Technology", 
          "id": "https://www.grid.ac/institutes/grid.429485.6", 
          "name": [
            "Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA", 
            "Low Energy Electronic Systems Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 CREATE Way, 138602, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grade\u010dak", 
        "givenName": "Silvija", 
        "id": "sg:person.01154111506.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154111506.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Singapore", 
          "id": "https://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore, Singapore", 
            "Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore", 
            "Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garaj", 
        "givenName": "Slaven", 
        "id": "sg:person.0577522223.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577522223.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/2053-1583/3/4/042001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002373761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apmt.2015.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002806401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4908256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002837360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.153402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.153402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004102128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4895469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007664108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008703953", 
          "https://doi.org/10.1038/nnano.2014.26"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/jmr.2016.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011251957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn401420h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012629281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn500064s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013761488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201603850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015747571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jacs.5b01594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016121565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201306095", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017999671"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201304389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024235766"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep21536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025333565", 
          "https://doi.org/10.1038/srep21536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4954991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025678318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4967188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027103587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep35154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028901399", 
          "https://doi.org/10.1038/srep35154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12274-015-0826-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029323875", 
          "https://doi.org/10.1007/s12274-015-0826-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/27/13/13lt01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030215628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b02057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030556737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2014.14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030977659", 
          "https://doi.org/10.1038/nnano.2014.14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b03443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032371934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201500368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034773222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b00536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040368410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr04515c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041223266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201503163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042038143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl4007479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043398078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044703873", 
          "https://doi.org/10.1038/nmat4091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045006969", 
          "https://doi.org/10.1038/nmat4205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050119463", 
          "https://doi.org/10.1038/nchem.1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr05630a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052500195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3nr05630a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052500195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b03075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b07580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1856702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057828626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.30.813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060536617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.6671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.6671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.205422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.205422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060644979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.126806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.126806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b04775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079400596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b04814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083401067"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b07661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083401810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b05045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084123996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7nr00272f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084135781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsami.7b08313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091247636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.7b02914", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091296604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00516-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091790091", 
          "https://doi.org/10.1038/s41467-017-00516-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092054819", 
          "https://doi.org/10.1038/nmat4996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092054819", 
          "https://doi.org/10.1038/nmat4996"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Two-dimensional (2D) transition metal dichalcogenides can be alloyed by substitution at the metal atom site with negligible effect on lattice strain, but with significant influence on optical and electrical properties. In this work, we establish the relationship between composition and optical properties of the MoxW1-xS2 alloy by investigating the effect of continuously-varying composition on photoluminescence intensity. We developed a new process for growth of two-dimensional MoxW1-xS2 alloys that span nearly the full composition range along a single crystal, thus avoiding any sample-related heterogeneities. The graded alloy crystals were grown using a diffusion-based chemical vapor deposition (CVD) method that starts by synthesizing a WS2 crystal with a graded point defect distribution, followed by Mo alloying in the second stage. We show that point defects promote the diffusion and alloying, as confirmed by Raman and photoluminescence measurements, density functional theory calculations of the reaction path, and observation that no alloying occurs in CVD-treated exfoliated crystals with low defect density. We observe a significant dependence of the optical quantum yield as a function of the alloy composition reaching the maximum intensity for the equicompositional Mo0.5W0.5S2 alloy. Furthermore, we map the growth-induced strain distribution within the alloyed crystals to decouple composition and strain effects on optical properties: at the same composition, we observe significant decrease in quantum yield with induced strain. Our approach is generally applicable to other 2D materials as well as the optimization of other composition-dependent properties within a single crystal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-31220-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Two-Dimensional MoxW1\u2212xS2 Graded Alloys: Growth and Optical Properties", 
    "pagination": "12889", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ee96e58684f418b27cbf7db0bc24943e51b614f40716ba258a9c8dd021b3a28a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30150768"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-31220-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106295137"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-31220-z", 
      "https://app.dimensions.ai/details/publication/pub.1106295137"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-31220-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31220-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31220-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31220-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-31220-z'


 

This table displays all metadata directly associated to this object as RDF triples.

290 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-31220-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3088f0cc566547d494d8c4cb6b6b8b24
4 schema:citation sg:pub.10.1007/s12274-015-0826-7
5 sg:pub.10.1038/nchem.1589
6 sg:pub.10.1038/nmat4091
7 sg:pub.10.1038/nmat4205
8 sg:pub.10.1038/nmat4996
9 sg:pub.10.1038/nnano.2010.279
10 sg:pub.10.1038/nnano.2014.14
11 sg:pub.10.1038/nnano.2014.26
12 sg:pub.10.1038/s41467-017-00516-5
13 sg:pub.10.1038/srep21536
14 sg:pub.10.1038/srep35154
15 https://doi.org/10.1002/adfm.201603850
16 https://doi.org/10.1002/adma.201304389
17 https://doi.org/10.1002/adma.201306095
18 https://doi.org/10.1002/adma.201500368
19 https://doi.org/10.1002/adma.201503163
20 https://doi.org/10.1016/j.apmt.2015.09.001
21 https://doi.org/10.1021/acs.nanolett.6b00536
22 https://doi.org/10.1021/acs.nanolett.6b02057
23 https://doi.org/10.1021/acs.nanolett.6b03075
24 https://doi.org/10.1021/acs.nanolett.6b04775
25 https://doi.org/10.1021/acs.nanolett.6b04814
26 https://doi.org/10.1021/acs.nanolett.6b05045
27 https://doi.org/10.1021/acsami.7b08313
28 https://doi.org/10.1021/acsnano.6b03443
29 https://doi.org/10.1021/acsnano.6b07580
30 https://doi.org/10.1021/acsnano.6b07661
31 https://doi.org/10.1021/acsnano.7b02914
32 https://doi.org/10.1021/jacs.5b01594
33 https://doi.org/10.1021/nl4007479
34 https://doi.org/10.1021/nl903868w
35 https://doi.org/10.1021/nn401420h
36 https://doi.org/10.1021/nn500064s
37 https://doi.org/10.1039/c3nr04515c
38 https://doi.org/10.1039/c3nr05630a
39 https://doi.org/10.1039/c7nr00272f
40 https://doi.org/10.1063/1.1856702
41 https://doi.org/10.1063/1.4895469
42 https://doi.org/10.1063/1.4908256
43 https://doi.org/10.1063/1.4954991
44 https://doi.org/10.1063/1.4967188
45 https://doi.org/10.1088/0957-4484/27/13/13lt01
46 https://doi.org/10.1088/2053-1583/3/4/042001
47 https://doi.org/10.1103/physrevb.30.813
48 https://doi.org/10.1103/physrevb.46.6671
49 https://doi.org/10.1103/physrevb.47.558
50 https://doi.org/10.1103/physrevb.50.17953
51 https://doi.org/10.1103/physrevb.54.11169
52 https://doi.org/10.1103/physrevb.84.153402
53 https://doi.org/10.1103/physrevb.85.205302
54 https://doi.org/10.1103/physrevb.90.205422
55 https://doi.org/10.1103/physrevlett.105.136805
56 https://doi.org/10.1103/physrevlett.115.126806
57 https://doi.org/10.1557/jmr.2016.47
58 schema:datePublished 2018-12
59 schema:datePublishedReg 2018-12-01
60 schema:description Two-dimensional (2D) transition metal dichalcogenides can be alloyed by substitution at the metal atom site with negligible effect on lattice strain, but with significant influence on optical and electrical properties. In this work, we establish the relationship between composition and optical properties of the Mo<sub>x</sub>W<sub>1-x</sub>S<sub>2</sub> alloy by investigating the effect of continuously-varying composition on photoluminescence intensity. We developed a new process for growth of two-dimensional Mo<sub>x</sub>W<sub>1-x</sub>S<sub>2</sub> alloys that span nearly the full composition range along a single crystal, thus avoiding any sample-related heterogeneities. The graded alloy crystals were grown using a diffusion-based chemical vapor deposition (CVD) method that starts by synthesizing a WS<sub>2</sub> crystal with a graded point defect distribution, followed by Mo alloying in the second stage. We show that point defects promote the diffusion and alloying, as confirmed by Raman and photoluminescence measurements, density functional theory calculations of the reaction path, and observation that no alloying occurs in CVD-treated exfoliated crystals with low defect density. We observe a significant dependence of the optical quantum yield as a function of the alloy composition reaching the maximum intensity for the equicompositional Mo<sub>0.5</sub>W<sub>0.5</sub>S<sub>2</sub> alloy. Furthermore, we map the growth-induced strain distribution within the alloyed crystals to decouple composition and strain effects on optical properties: at the same composition, we observe significant decrease in quantum yield with induced strain. Our approach is generally applicable to other 2D materials as well as the optimization of other composition-dependent properties within a single crystal.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N7ae14237848f4c97a5c9cc6f97ebbe67
65 Ncc25a5aae3c44a4cbf6e9d49bb9e6a74
66 sg:journal.1045337
67 schema:name Two-Dimensional MoxW1−xS2 Graded Alloys: Growth and Optical Properties
68 schema:pagination 12889
69 schema:productId N06add1bdd1a64fdbb31c83a642a77c25
70 N691c9a2527914736a568d3d66c14af26
71 N859c230a603f42edb835a45ab2337ff7
72 Ncf565edec08943dfbf06357dd4c503ab
73 Ned6c0a2a1f234a88801c3b686fd7edc4
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106295137
75 https://doi.org/10.1038/s41598-018-31220-z
76 schema:sdDatePublished 2019-04-10T20:06
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher N27f42b1daf28478684acf269131add5f
79 schema:url https://www.nature.com/articles/s41598-018-31220-z
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N06add1bdd1a64fdbb31c83a642a77c25 schema:name nlm_unique_id
84 schema:value 101563288
85 rdf:type schema:PropertyValue
86 N0ffb7bd66b8e48a7bea83c6e978e0084 rdf:first sg:person.01154111506.18
87 rdf:rest N88c90a224e434566bfae6dad3497b2d6
88 N27f42b1daf28478684acf269131add5f schema:name Springer Nature - SN SciGraph project
89 rdf:type schema:Organization
90 N3088f0cc566547d494d8c4cb6b6b8b24 rdf:first sg:person.015143605325.28
91 rdf:rest N87ce01589c844386b40f59fe177fc8cb
92 N39c51a014de0445e8db5b2daa806a07a rdf:first Nd9a6e1fd04db4262a644bf82853e389a
93 rdf:rest N61df3cac11034e16a8e04921ee218182
94 N61df3cac11034e16a8e04921ee218182 rdf:first sg:person.01113537071.63
95 rdf:rest Ned413304550b488a996bbb4f9d77ae90
96 N691c9a2527914736a568d3d66c14af26 schema:name pubmed_id
97 schema:value 30150768
98 rdf:type schema:PropertyValue
99 N7ae14237848f4c97a5c9cc6f97ebbe67 schema:issueNumber 1
100 rdf:type schema:PublicationIssue
101 N859c230a603f42edb835a45ab2337ff7 schema:name doi
102 schema:value 10.1038/s41598-018-31220-z
103 rdf:type schema:PropertyValue
104 N87ce01589c844386b40f59fe177fc8cb rdf:first sg:person.0765466024.47
105 rdf:rest N39c51a014de0445e8db5b2daa806a07a
106 N88c90a224e434566bfae6dad3497b2d6 rdf:first sg:person.0577522223.68
107 rdf:rest rdf:nil
108 Ncc25a5aae3c44a4cbf6e9d49bb9e6a74 schema:volumeNumber 8
109 rdf:type schema:PublicationVolume
110 Ncf565edec08943dfbf06357dd4c503ab schema:name readcube_id
111 schema:value ee96e58684f418b27cbf7db0bc24943e51b614f40716ba258a9c8dd021b3a28a
112 rdf:type schema:PropertyValue
113 Nd9a6e1fd04db4262a644bf82853e389a schema:affiliation https://www.grid.ac/institutes/grid.4280.e
114 schema:familyName Liu
115 schema:givenName Tao
116 rdf:type schema:Person
117 Ned413304550b488a996bbb4f9d77ae90 rdf:first sg:person.01072225733.21
118 rdf:rest N0ffb7bd66b8e48a7bea83c6e978e0084
119 Ned6c0a2a1f234a88801c3b686fd7edc4 schema:name dimensions_id
120 schema:value pub.1106295137
121 rdf:type schema:PropertyValue
122 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
123 schema:name Engineering
124 rdf:type schema:DefinedTerm
125 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
126 schema:name Materials Engineering
127 rdf:type schema:DefinedTerm
128 sg:journal.1045337 schema:issn 2045-2322
129 schema:name Scientific Reports
130 rdf:type schema:Periodical
131 sg:person.01072225733.21 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
132 schema:familyName Zhang
133 schema:givenName Chun
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072225733.21
135 rdf:type schema:Person
136 sg:person.01113537071.63 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
137 schema:familyName Guo
138 schema:givenName Na
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113537071.63
140 rdf:type schema:Person
141 sg:person.01154111506.18 schema:affiliation https://www.grid.ac/institutes/grid.429485.6
142 schema:familyName Gradečak
143 schema:givenName Silvija
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154111506.18
145 rdf:type schema:Person
146 sg:person.015143605325.28 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
147 schema:familyName Bogaert
148 schema:givenName Kevin
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015143605325.28
150 rdf:type schema:Person
151 sg:person.0577522223.68 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
152 schema:familyName Garaj
153 schema:givenName Slaven
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577522223.68
155 rdf:type schema:Person
156 sg:person.0765466024.47 schema:affiliation https://www.grid.ac/institutes/grid.4280.e
157 schema:familyName Liu
158 schema:givenName Song
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765466024.47
160 rdf:type schema:Person
161 sg:pub.10.1007/s12274-015-0826-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029323875
162 https://doi.org/10.1007/s12274-015-0826-7
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nchem.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119463
165 https://doi.org/10.1038/nchem.1589
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nmat4091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044703873
168 https://doi.org/10.1038/nmat4091
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/nmat4205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045006969
171 https://doi.org/10.1038/nmat4205
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nmat4996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092054819
174 https://doi.org/10.1038/nmat4996
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
177 https://doi.org/10.1038/nnano.2010.279
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nnano.2014.14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030977659
180 https://doi.org/10.1038/nnano.2014.14
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nnano.2014.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008703953
183 https://doi.org/10.1038/nnano.2014.26
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/s41467-017-00516-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091790091
186 https://doi.org/10.1038/s41467-017-00516-5
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/srep21536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025333565
189 https://doi.org/10.1038/srep21536
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/srep35154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028901399
192 https://doi.org/10.1038/srep35154
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1002/adfm.201603850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015747571
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1002/adma.201304389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024235766
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1002/adma.201306095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017999671
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/adma.201500368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034773222
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/adma.201503163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042038143
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/j.apmt.2015.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002806401
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/acs.nanolett.6b00536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040368410
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/acs.nanolett.6b02057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030556737
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/acs.nanolett.6b03075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121762
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/acs.nanolett.6b04775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079400596
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1021/acs.nanolett.6b04814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083401067
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1021/acs.nanolett.6b05045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084123996
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1021/acsami.7b08313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091247636
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1021/acsnano.6b03443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032371934
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1021/acsnano.6b07580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138467
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/acsnano.6b07661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083401810
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/acsnano.7b02914 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091296604
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1021/jacs.5b01594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016121565
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1021/nl4007479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043398078
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1021/nn401420h schema:sameAs https://app.dimensions.ai/details/publication/pub.1012629281
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1021/nn500064s schema:sameAs https://app.dimensions.ai/details/publication/pub.1013761488
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1039/c3nr04515c schema:sameAs https://app.dimensions.ai/details/publication/pub.1041223266
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1039/c3nr05630a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052500195
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1039/c7nr00272f schema:sameAs https://app.dimensions.ai/details/publication/pub.1084135781
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1063/1.1856702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057828626
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1063/1.4895469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007664108
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1063/1.4908256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002837360
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1063/1.4954991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025678318
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1063/1.4967188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027103587
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1088/0957-4484/27/13/13lt01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030215628
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1088/2053-1583/3/4/042001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002373761
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevb.30.813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060536617
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevb.46.6671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060564150
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevb.84.153402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004102128
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevb.85.205302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578033
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1103/physrevb.90.205422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060644979
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1103/physrevlett.115.126806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764122
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1557/jmr.2016.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011251957
279 rdf:type schema:CreativeWork
280 https://www.grid.ac/institutes/grid.4280.e schema:alternateName National University of Singapore
281 schema:name Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, 117546, Singapore, Singapore
282 Department of Biomedical Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore
283 Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
284 Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
285 Department of Physics, National University of Singapore, 2 Science Drive 3, 117542, Singapore, Singapore
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.429485.6 schema:alternateName Singapore-MIT Alliance for Research and Technology
288 schema:name Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 02139, Cambridge, MA, USA
289 Low Energy Electronic Systems Interdisciplinary Research Group, Singapore-MIT Alliance in Research and Technology, 1 CREATE Way, 138602, Singapore, Singapore
290 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...