Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-08-16

AUTHORS

Sabrina Kuchling, Ian Kopacka, Elfriede Kalcher-Sommersguter, Michael Schwarz, Karl Crailsheim, Robert Brodschneider

ABSTRACT

The health of honey bee colonies is, amongst others, affected by the amount, quality and diversity of available melliferous plants. Since landscape is highly diverse throughout Austria regarding the availability of nutritional resources, we used data from annual surveys on honey bee colony losses ranging over six years to analyse a possible relationship with land use. The data set comprises reports from a total of 6,655 beekeepers and 129,428 wintered honey bee colonies. Regions surrounding the beekeeping operations were assigned to one of six clusters according to their composition of land use categories by use of a hierarchical cluster analysis, allowing a rough distinction between urban regions, regions predominated by semi-natural areas and pastures, and mainly agricultural environments. We ran a Generalised Linear Mixed Model and found winter colony mortality significantly affected by operation size, year, and cluster membership, but also by the interaction of year and cluster membership. Honey bee colonies in regions composed predominantly of semi-natural areas, coniferous forests and pastures had the lowest loss probability in four out of six years, and loss probabilities within these regions were significantly lower in five out of six years compared to those within regions composed predominantly of artificial surfaces, broad-leaved and coniferous forest. More... »

PAGES

12263

References to SciGraph publications

  • 2016-08-26. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development in SCIENTIFIC REPORTS
  • 2016-08-11. Predicting bee community responses to land-use changes: Effects of geographic and taxonomic biases in SCIENTIFIC REPORTS
  • 2016-10-05. Review of field and monitoring studies investigating the role of nitro-substituted neonicotinoid insecticides in the reported losses of honey bee colonies (Apis mellifera) in ECOTOXICOLOGY
  • 2015-08-20. Evidence for pollinator cost and farming benefits of neonicotinoid seed coatings on oilseed rape in SCIENTIFIC REPORTS
  • 2012-02-18. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment in ECOTOXICOLOGY
  • 2017-01-13. A ‘Landscape physiology’ approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats in SCIENTIFIC REPORTS
  • 2016-09-19. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on honey bees (Apis mellifera) in ECOTOXICOLOGY
  • 2009. ggplot2, Elegant Graphics for Data Analysis in NONE
  • 2010-04-21. Nutrition and health in honey bees in APIDOLOGIE
  • 2017-02-15. Landscape and pesticide effects on honey bees: forager survival and expression of acetylcholinesterase and brain oxidative genes in APIDOLOGIE
  • 2015-11-06. Effects of a neonicotinoid pesticide on honey bee colonies: a response to the field study by Pilling et al. (2013) in ENVIRONMENTAL SCIENCES EUROPE
  • 2015-04-14. A national survey of managed honey bee 2013–2014 annual colony losses in the USA in APIDOLOGIE
  • 2017-06-19. The challenges of predicting pesticide exposure of honey bees at landscape level in SCIENTIFIC REPORTS
  • 2016-12-19. Influence of different pollen diets on the development of hypopharyngeal glands and size of acid gland sacs in caged honey bees (Apis mellifera) in APIDOLOGIE
  • 2013. An Introduction to Statistical Learning, with Applications in R in NONE
  • 2016-11-28. Safeguarding pollinators and their values to human well-being in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-30891-y

    DOI

    http://dx.doi.org/10.1038/s41598-018-30891-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106100419

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30116056


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/05", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0502", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Environmental Science and Management", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bees", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cluster Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Environment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mortality", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Seasons", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Time Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.414107.7", 
              "name": [
                "Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kuchling", 
            "givenName": "Sabrina", 
            "id": "sg:person.0751126524.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751126524.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.414107.7", 
              "name": [
                "Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kopacka", 
            "givenName": "Ian", 
            "id": "sg:person.01211547000.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211547000.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Graz, Institute of Biology, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "University of Graz, Institute of Biology, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kalcher-Sommersguter", 
            "givenName": "Elfriede", 
            "id": "sg:person.01160051521.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160051521.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 1210, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.414107.7", 
              "name": [
                "Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 1210, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schwarz", 
            "givenName": "Michael", 
            "id": "sg:person.014507126447.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507126447.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Graz, Institute of Biology, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "University of Graz, Institute of Biology, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crailsheim", 
            "givenName": "Karl", 
            "id": "sg:person.01366315645.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Graz, Institute of Biology, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.5110.5", 
              "name": [
                "University of Graz, Institute of Biology, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brodschneider", 
            "givenName": "Robert", 
            "id": "sg:person.014035100575.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014035100575.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/srep31153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001525706", 
              "https://doi.org/10.1038/srep31153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10646-016-1734-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021031806", 
              "https://doi.org/10.1007/s10646-016-1734-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep40568", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020854820", 
              "https://doi.org/10.1038/srep40568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1051/apido/2010012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056950440", 
              "https://doi.org/10.1051/apido/2010012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13592-016-0487-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029076903", 
              "https://doi.org/10.1007/s13592-016-0487-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature20588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046618451", 
              "https://doi.org/10.1038/nature20588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10646-016-1725-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016003182", 
              "https://doi.org/10.1007/s10646-016-1725-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-7138-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044216575", 
              "https://doi.org/10.1007/978-1-4614-7138-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep32108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043874522", 
              "https://doi.org/10.1038/srep32108"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep12574", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016918734", 
              "https://doi.org/10.1038/srep12574"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13592-015-0356-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041130465", 
              "https://doi.org/10.1007/s13592-015-0356-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13592-017-0497-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083870725", 
              "https://doi.org/10.1007/s13592-017-0497-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-0-387-98141-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041188628", 
              "https://doi.org/10.1007/978-0-387-98141-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10646-012-0863-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020731948", 
              "https://doi.org/10.1007/s10646-012-0863-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12302-015-0060-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016943846", 
              "https://doi.org/10.1186/s12302-015-0060-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-03467-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086000715", 
              "https://doi.org/10.1038/s41598-017-03467-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-08-16", 
        "datePublishedReg": "2018-08-16", 
        "description": "The health of honey bee colonies is, amongst others, affected by the amount, quality and diversity of available melliferous plants. Since landscape is highly diverse throughout Austria regarding the availability of nutritional resources, we used data from annual surveys on honey bee colony losses ranging over six years to analyse a possible relationship with land use. The data set comprises reports from a total of 6,655 beekeepers and 129,428 wintered honey bee colonies. Regions surrounding the beekeeping operations were assigned to one of six clusters according to their composition of land use categories by use of a hierarchical cluster analysis, allowing a rough distinction between urban regions, regions predominated by semi-natural areas and pastures, and mainly agricultural environments. We ran a Generalised Linear Mixed Model and found winter colony mortality significantly affected by operation size, year, and cluster membership, but also by the interaction of year and cluster membership. Honey bee colonies in regions composed predominantly of semi-natural areas, coniferous forests and pastures had the lowest loss probability in four out of six years, and loss probabilities within these regions were significantly lower in five out of six years compared to those within regions composed predominantly of artificial surfaces, broad-leaved and coniferous forest.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/s41598-018-30891-y", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "keywords": [
          "honey bee colonies", 
          "semi-natural areas", 
          "honey bee colony losses", 
          "coniferous forests", 
          "bee colony losses", 
          "bee colonies", 
          "colony losses", 
          "melliferous plants", 
          "nutritional resources", 
          "colony mortality", 
          "landscape composition", 
          "winter colony mortality", 
          "winter mortality", 
          "agricultural environments", 
          "colonies", 
          "generalised linear mixed model", 
          "forest", 
          "interaction of year", 
          "land use categories", 
          "hierarchical cluster analysis", 
          "cluster analysis", 
          "pasture", 
          "plants", 
          "diversity", 
          "region", 
          "land use", 
          "artificial surfaces", 
          "loss probability", 
          "use categories", 
          "beekeepers", 
          "linear mixed models", 
          "composition", 
          "landscape", 
          "possible relationship", 
          "role", 
          "availability", 
          "mixed models", 
          "interaction", 
          "cluster membership", 
          "clusters", 
          "analysis", 
          "loss", 
          "comprises", 
          "environment", 
          "data", 
          "area", 
          "probability", 
          "long-term analysis", 
          "size", 
          "low loss probability", 
          "resources", 
          "amount", 
          "relationship", 
          "years", 
          "mortality", 
          "annual survey", 
          "total", 
          "use", 
          "health", 
          "distinction", 
          "model", 
          "surface", 
          "Austria", 
          "rough distinction", 
          "operation", 
          "categories", 
          "quality", 
          "survey", 
          "operation size", 
          "membership", 
          "urban regions"
        ], 
        "name": "Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis", 
        "pagination": "12263", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106100419"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-30891-y"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30116056"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-30891-y", 
          "https://app.dimensions.ai/details/publication/pub.1106100419"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_757.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/s41598-018-30891-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-30891-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-30891-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-30891-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-30891-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    263 TRIPLES      21 PREDICATES      119 URIs      95 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-30891-y schema:about N024d7187c294458d99c1357661d10f9d
    2 N2b7f40a559ef4c0ebfc55b09bedffa0d
    3 N407f36379f1e4364bbc427cd4438ad6f
    4 N5f6da6b60bed4141a448630cbe27adee
    5 Nb7e2633606274a6ba5422b7c1736ac5a
    6 Nc81b1d15fbe54138ac73e429d4042fa7
    7 Nea8217e5fbe34d7ab4d84cf2e86aebfa
    8 anzsrc-for:05
    9 anzsrc-for:0502
    10 schema:author N45dc755db15e4ca5aeafac787e23befc
    11 schema:citation sg:pub.10.1007/978-0-387-98141-3
    12 sg:pub.10.1007/978-1-4614-7138-7
    13 sg:pub.10.1007/s10646-012-0863-x
    14 sg:pub.10.1007/s10646-016-1725-8
    15 sg:pub.10.1007/s10646-016-1734-7
    16 sg:pub.10.1007/s13592-015-0356-z
    17 sg:pub.10.1007/s13592-016-0487-x
    18 sg:pub.10.1007/s13592-017-0497-3
    19 sg:pub.10.1038/nature20588
    20 sg:pub.10.1038/s41598-017-03467-5
    21 sg:pub.10.1038/srep12574
    22 sg:pub.10.1038/srep31153
    23 sg:pub.10.1038/srep32108
    24 sg:pub.10.1038/srep40568
    25 sg:pub.10.1051/apido/2010012
    26 sg:pub.10.1186/s12302-015-0060-7
    27 schema:datePublished 2018-08-16
    28 schema:datePublishedReg 2018-08-16
    29 schema:description The health of honey bee colonies is, amongst others, affected by the amount, quality and diversity of available melliferous plants. Since landscape is highly diverse throughout Austria regarding the availability of nutritional resources, we used data from annual surveys on honey bee colony losses ranging over six years to analyse a possible relationship with land use. The data set comprises reports from a total of 6,655 beekeepers and 129,428 wintered honey bee colonies. Regions surrounding the beekeeping operations were assigned to one of six clusters according to their composition of land use categories by use of a hierarchical cluster analysis, allowing a rough distinction between urban regions, regions predominated by semi-natural areas and pastures, and mainly agricultural environments. We ran a Generalised Linear Mixed Model and found winter colony mortality significantly affected by operation size, year, and cluster membership, but also by the interaction of year and cluster membership. Honey bee colonies in regions composed predominantly of semi-natural areas, coniferous forests and pastures had the lowest loss probability in four out of six years, and loss probabilities within these regions were significantly lower in five out of six years compared to those within regions composed predominantly of artificial surfaces, broad-leaved and coniferous forest.
    30 schema:genre article
    31 schema:isAccessibleForFree true
    32 schema:isPartOf N59d2c36b385c4f18beb2be80dd30b5b1
    33 Ncf52918231ac459b9d515b54cf2cf452
    34 sg:journal.1045337
    35 schema:keywords Austria
    36 agricultural environments
    37 amount
    38 analysis
    39 annual survey
    40 area
    41 artificial surfaces
    42 availability
    43 bee colonies
    44 bee colony losses
    45 beekeepers
    46 categories
    47 cluster analysis
    48 cluster membership
    49 clusters
    50 colonies
    51 colony losses
    52 colony mortality
    53 composition
    54 comprises
    55 coniferous forests
    56 data
    57 distinction
    58 diversity
    59 environment
    60 forest
    61 generalised linear mixed model
    62 health
    63 hierarchical cluster analysis
    64 honey bee colonies
    65 honey bee colony losses
    66 interaction
    67 interaction of year
    68 land use
    69 land use categories
    70 landscape
    71 landscape composition
    72 linear mixed models
    73 long-term analysis
    74 loss
    75 loss probability
    76 low loss probability
    77 melliferous plants
    78 membership
    79 mixed models
    80 model
    81 mortality
    82 nutritional resources
    83 operation
    84 operation size
    85 pasture
    86 plants
    87 possible relationship
    88 probability
    89 quality
    90 region
    91 relationship
    92 resources
    93 role
    94 rough distinction
    95 semi-natural areas
    96 size
    97 surface
    98 survey
    99 total
    100 urban regions
    101 use
    102 use categories
    103 winter colony mortality
    104 winter mortality
    105 years
    106 schema:name Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis
    107 schema:pagination 12263
    108 schema:productId N8a54ec985a914e34bac373d454336c30
    109 N9906eff3570d435aa07d0eb6e696011a
    110 Nfb6bf5b2330545bab5f0cd2cef6de7d3
    111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106100419
    112 https://doi.org/10.1038/s41598-018-30891-y
    113 schema:sdDatePublished 2022-12-01T06:36
    114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    115 schema:sdPublisher N63cae1a2eb0c439cacc29e2f21f04b32
    116 schema:url https://doi.org/10.1038/s41598-018-30891-y
    117 sgo:license sg:explorer/license/
    118 sgo:sdDataset articles
    119 rdf:type schema:ScholarlyArticle
    120 N024d7187c294458d99c1357661d10f9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Time Factors
    122 rdf:type schema:DefinedTerm
    123 N2b7f40a559ef4c0ebfc55b09bedffa0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Mortality
    125 rdf:type schema:DefinedTerm
    126 N3f1e8751ee4a41d1b048a517a25c4dcc rdf:first sg:person.01160051521.08
    127 rdf:rest Ncc908eda95484198bf7d01a6707cd437
    128 N407f36379f1e4364bbc427cd4438ad6f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Bees
    130 rdf:type schema:DefinedTerm
    131 N45dc755db15e4ca5aeafac787e23befc rdf:first sg:person.0751126524.71
    132 rdf:rest Nbad097f015324576a8d524447f304019
    133 N59d2c36b385c4f18beb2be80dd30b5b1 schema:issueNumber 1
    134 rdf:type schema:PublicationIssue
    135 N5f6da6b60bed4141a448630cbe27adee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Environment
    137 rdf:type schema:DefinedTerm
    138 N63cae1a2eb0c439cacc29e2f21f04b32 schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 N773b10524bab47209264246a6c5c710a rdf:first sg:person.014035100575.27
    141 rdf:rest rdf:nil
    142 N8a54ec985a914e34bac373d454336c30 schema:name dimensions_id
    143 schema:value pub.1106100419
    144 rdf:type schema:PropertyValue
    145 N963dd1c4c342443f992d11003b608e4f rdf:first sg:person.01366315645.25
    146 rdf:rest N773b10524bab47209264246a6c5c710a
    147 N9906eff3570d435aa07d0eb6e696011a schema:name doi
    148 schema:value 10.1038/s41598-018-30891-y
    149 rdf:type schema:PropertyValue
    150 Nb7e2633606274a6ba5422b7c1736ac5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Animals
    152 rdf:type schema:DefinedTerm
    153 Nbad097f015324576a8d524447f304019 rdf:first sg:person.01211547000.20
    154 rdf:rest N3f1e8751ee4a41d1b048a517a25c4dcc
    155 Nc81b1d15fbe54138ac73e429d4042fa7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Cluster Analysis
    157 rdf:type schema:DefinedTerm
    158 Ncc908eda95484198bf7d01a6707cd437 rdf:first sg:person.014507126447.02
    159 rdf:rest N963dd1c4c342443f992d11003b608e4f
    160 Ncf52918231ac459b9d515b54cf2cf452 schema:volumeNumber 8
    161 rdf:type schema:PublicationVolume
    162 Nea8217e5fbe34d7ab4d84cf2e86aebfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name Seasons
    164 rdf:type schema:DefinedTerm
    165 Nfb6bf5b2330545bab5f0cd2cef6de7d3 schema:name pubmed_id
    166 schema:value 30116056
    167 rdf:type schema:PropertyValue
    168 anzsrc-for:05 schema:inDefinedTermSet anzsrc-for:
    169 schema:name Environmental Sciences
    170 rdf:type schema:DefinedTerm
    171 anzsrc-for:0502 schema:inDefinedTermSet anzsrc-for:
    172 schema:name Environmental Science and Management
    173 rdf:type schema:DefinedTerm
    174 sg:journal.1045337 schema:issn 2045-2322
    175 schema:name Scientific Reports
    176 schema:publisher Springer Nature
    177 rdf:type schema:Periodical
    178 sg:person.01160051521.08 schema:affiliation grid-institutes:grid.5110.5
    179 schema:familyName Kalcher-Sommersguter
    180 schema:givenName Elfriede
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160051521.08
    182 rdf:type schema:Person
    183 sg:person.01211547000.20 schema:affiliation grid-institutes:grid.414107.7
    184 schema:familyName Kopacka
    185 schema:givenName Ian
    186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211547000.20
    187 rdf:type schema:Person
    188 sg:person.01366315645.25 schema:affiliation grid-institutes:grid.5110.5
    189 schema:familyName Crailsheim
    190 schema:givenName Karl
    191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366315645.25
    192 rdf:type schema:Person
    193 sg:person.014035100575.27 schema:affiliation grid-institutes:grid.5110.5
    194 schema:familyName Brodschneider
    195 schema:givenName Robert
    196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014035100575.27
    197 rdf:type schema:Person
    198 sg:person.014507126447.02 schema:affiliation grid-institutes:grid.414107.7
    199 schema:familyName Schwarz
    200 schema:givenName Michael
    201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507126447.02
    202 rdf:type schema:Person
    203 sg:person.0751126524.71 schema:affiliation grid-institutes:grid.414107.7
    204 schema:familyName Kuchling
    205 schema:givenName Sabrina
    206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751126524.71
    207 rdf:type schema:Person
    208 sg:pub.10.1007/978-0-387-98141-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041188628
    209 https://doi.org/10.1007/978-0-387-98141-3
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1007/978-1-4614-7138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044216575
    212 https://doi.org/10.1007/978-1-4614-7138-7
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1007/s10646-012-0863-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020731948
    215 https://doi.org/10.1007/s10646-012-0863-x
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1007/s10646-016-1725-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016003182
    218 https://doi.org/10.1007/s10646-016-1725-8
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1007/s10646-016-1734-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021031806
    221 https://doi.org/10.1007/s10646-016-1734-7
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1007/s13592-015-0356-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1041130465
    224 https://doi.org/10.1007/s13592-015-0356-z
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1007/s13592-016-0487-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029076903
    227 https://doi.org/10.1007/s13592-016-0487-x
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1007/s13592-017-0497-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083870725
    230 https://doi.org/10.1007/s13592-017-0497-3
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nature20588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046618451
    233 https://doi.org/10.1038/nature20588
    234 rdf:type schema:CreativeWork
    235 sg:pub.10.1038/s41598-017-03467-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086000715
    236 https://doi.org/10.1038/s41598-017-03467-5
    237 rdf:type schema:CreativeWork
    238 sg:pub.10.1038/srep12574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016918734
    239 https://doi.org/10.1038/srep12574
    240 rdf:type schema:CreativeWork
    241 sg:pub.10.1038/srep31153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001525706
    242 https://doi.org/10.1038/srep31153
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/srep32108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043874522
    245 https://doi.org/10.1038/srep32108
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/srep40568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020854820
    248 https://doi.org/10.1038/srep40568
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1051/apido/2010012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056950440
    251 https://doi.org/10.1051/apido/2010012
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1186/s12302-015-0060-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016943846
    254 https://doi.org/10.1186/s12302-015-0060-7
    255 rdf:type schema:CreativeWork
    256 grid-institutes:grid.414107.7 schema:alternateName Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 1210, Vienna, Austria
    257 Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 8010, Graz, Austria
    258 schema:name Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 1210, Vienna, Austria
    259 Austrian Agency for Health and Food Safety (AGES) GmbH, Data, Statistics and Integrative Risk Assessment, 8010, Graz, Austria
    260 rdf:type schema:Organization
    261 grid-institutes:grid.5110.5 schema:alternateName University of Graz, Institute of Biology, 8010, Graz, Austria
    262 schema:name University of Graz, Institute of Biology, 8010, Graz, Austria
    263 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...