Finite-time scaling in local bifurcations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Álvaro Corral, Josep Sardanyés, Lluís Alsedà

ABSTRACT

Finite-size scaling is a key tool in statistical physics, used to infer critical behavior in finite systems. Here we have made use of the analogous concept of finite-time scaling to describe the bifurcation diagram at finite times in discrete (deterministic) dynamical systems. We analytically derive finite-time scaling laws for two ubiquitous transitions given by the transcritical and the saddle-node bifurcation, obtaining exact expressions for the critical exponents and scaling functions. One of the scaling laws, corresponding to the distance of the dynamical variable to the attractor, turns out to be universal, in the sense that it holds for both bifurcations, yielding the same exponents and scaling function. Remarkably, the resulting scaling behavior in the transcritical bifurcation is precisely the same as the one in the (stochastic) Galton-Watson process. Our work establishes a new connection between thermodynamic phase transitions and bifurcations in low-dimensional dynamical systems, and opens new avenues to identify the nature of dynamical shifts in systems for which only short time series are available. More... »

PAGES

11783

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-30136-y

DOI

http://dx.doi.org/10.1038/s41598-018-30136-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105928948

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30082921


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Complexity Science Hub Vienna", 
          "id": "https://www.grid.ac/institutes/grid.484678.1", 
          "name": [
            "Centre de Recerca Matem\u00e0tica, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain", 
            "Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain", 
            "Departament de Matem\u00e0tiques, Universitat Aut\u00f2noma de Barcelona, Bellaterra, Barcelona, Spain", 
            "Complexity Science Hub Vienna, Josefst\u00e4dter Stra\u03b2e 39, 1080, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Corral", 
        "givenName": "\u00c1lvaro", 
        "id": "sg:person.01355447323.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355447323.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Barcelona Graduate School of Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.473540.1", 
          "name": [
            "Centre de Recerca Matem\u00e0tica, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain", 
            "Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sardany\u00e9s", 
        "givenName": "Josep", 
        "id": "sg:person.0764275504.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764275504.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Barcelona Graduate School of Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.473540.1", 
          "name": [
            "Departament de Matem\u00e0tiques, Universitat Aut\u00f2noma de Barcelona, Bellaterra, Barcelona, Spain", 
            "Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alsed\u00e0", 
        "givenName": "Llu\u00eds", 
        "id": "sg:person.015043036603.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015043036603.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s12080-013-0187-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001074219", 
          "https://doi.org/10.1007/s12080-013-0187-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-4371(98)00389-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004971697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.014301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006695333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.014301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006695333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physleta.2015.02.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008673469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-014-1447-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016669304", 
          "https://doi.org/10.1007/s11071-014-1447-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019367407", 
          "https://doi.org/10.1038/nature08227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019367407", 
          "https://doi.org/10.1038/nature08227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1210465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020204588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(98)00665-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021576444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027639762", 
          "https://doi.org/10.1038/nphys3915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1101867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034497937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037797055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2003.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037797055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1203672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038107155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0161586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039375739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35098000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039450839", 
          "https://doi.org/10.1038/35098000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35098000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039450839", 
          "https://doi.org/10.1038/35098000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1219805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040348336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0301-0104(82)88054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044327943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.031144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048264311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.86.031144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048264311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/451893a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051490962", 
          "https://doi.org/10.1038/451893a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(93)90185-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053513787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0020-7683(93)90185-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053513787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.472860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058052954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.042122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.91.042122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060747355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.3249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.66.3249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060802709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814503419_0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088748416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.201600402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090366107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511803260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098677710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511524288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098677990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/p365", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098905461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.90.031001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105523142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.90.031001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105523142"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Finite-size scaling is a key tool in statistical physics, used to infer critical behavior in finite systems. Here we have made use of the analogous concept of finite-time scaling to describe the bifurcation diagram at finite times in discrete (deterministic) dynamical systems. We analytically derive finite-time scaling laws for two ubiquitous transitions given by the transcritical and the saddle-node bifurcation, obtaining exact expressions for the critical exponents and scaling functions. One of the scaling laws, corresponding to the distance of the dynamical variable to the attractor, turns out to be universal, in the sense that it holds for both bifurcations, yielding the same exponents and scaling function. Remarkably, the resulting scaling behavior in the transcritical bifurcation is precisely the same as the one in the (stochastic) Galton-Watson process. Our work establishes a new connection between thermodynamic phase transitions and bifurcations in low-dimensional dynamical systems, and opens new avenues to identify the nature of dynamical shifts in systems for which only short time series are available.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-30136-y", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Finite-time scaling in local bifurcations", 
    "pagination": "11783", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0dd8de21bc7e16b8277e283051e2af0c2aa89c40527929d1655af539b196d58c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30082921"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-30136-y"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105928948"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-30136-y", 
      "https://app.dimensions.ai/details/publication/pub.1105928948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-30136-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-30136-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-30136-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-30136-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-30136-y'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-30136-y schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N7168d1ee516d47dba56c0eda1d48451e
4 schema:citation sg:pub.10.1007/s11071-014-1447-5
5 sg:pub.10.1007/s12080-013-0187-3
6 sg:pub.10.1038/35098000
7 sg:pub.10.1038/451893a
8 sg:pub.10.1038/nature08227
9 sg:pub.10.1038/nphys3915
10 https://doi.org/10.1002/andp.201600402
11 https://doi.org/10.1016/0020-7683(93)90185-a
12 https://doi.org/10.1016/0301-0104(82)88054-3
13 https://doi.org/10.1016/j.physleta.2015.02.019
14 https://doi.org/10.1016/j.tree.2003.09.002
15 https://doi.org/10.1016/s0375-9601(98)00665-3
16 https://doi.org/10.1016/s0378-4371(98)00389-6
17 https://doi.org/10.1017/cbo9780511524288
18 https://doi.org/10.1017/cbo9780511803260
19 https://doi.org/10.1063/1.472860
20 https://doi.org/10.1103/physreve.86.031144
21 https://doi.org/10.1103/physreve.91.042122
22 https://doi.org/10.1103/physrevlett.66.3249
23 https://doi.org/10.1103/physrevlett.98.014301
24 https://doi.org/10.1103/revmodphys.90.031001
25 https://doi.org/10.1126/science.1101867
26 https://doi.org/10.1126/science.1203672
27 https://doi.org/10.1126/science.1210465
28 https://doi.org/10.1126/science.1219805
29 https://doi.org/10.1142/9789814503419_0001
30 https://doi.org/10.1142/p365
31 https://doi.org/10.1371/journal.pone.0161586
32 schema:datePublished 2018-12
33 schema:datePublishedReg 2018-12-01
34 schema:description Finite-size scaling is a key tool in statistical physics, used to infer critical behavior in finite systems. Here we have made use of the analogous concept of finite-time scaling to describe the bifurcation diagram at finite times in discrete (deterministic) dynamical systems. We analytically derive finite-time scaling laws for two ubiquitous transitions given by the transcritical and the saddle-node bifurcation, obtaining exact expressions for the critical exponents and scaling functions. One of the scaling laws, corresponding to the distance of the dynamical variable to the attractor, turns out to be universal, in the sense that it holds for both bifurcations, yielding the same exponents and scaling function. Remarkably, the resulting scaling behavior in the transcritical bifurcation is precisely the same as the one in the (stochastic) Galton-Watson process. Our work establishes a new connection between thermodynamic phase transitions and bifurcations in low-dimensional dynamical systems, and opens new avenues to identify the nature of dynamical shifts in systems for which only short time series are available.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf Nb74d09c5beaf4988921f7f9c05416c57
39 Ndff4953eecf7483f96bba529ec4b5cec
40 sg:journal.1045337
41 schema:name Finite-time scaling in local bifurcations
42 schema:pagination 11783
43 schema:productId N307faa3ce5854d608d3a13b80b2e088e
44 N517c03f21efc45e7b550d9e9ab857cd3
45 N69be948d89b64280af5f98d8ec82e988
46 Nb5005aa2c0564a638359b13602579dd4
47 Ndab98c2357be432190c8b2a1c6692d6b
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105928948
49 https://doi.org/10.1038/s41598-018-30136-y
50 schema:sdDatePublished 2019-04-11T00:31
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N8b9ae666e98e44aab18339532b2747f2
53 schema:url https://www.nature.com/articles/s41598-018-30136-y
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N307faa3ce5854d608d3a13b80b2e088e schema:name readcube_id
58 schema:value 0dd8de21bc7e16b8277e283051e2af0c2aa89c40527929d1655af539b196d58c
59 rdf:type schema:PropertyValue
60 N517c03f21efc45e7b550d9e9ab857cd3 schema:name pubmed_id
61 schema:value 30082921
62 rdf:type schema:PropertyValue
63 N69be948d89b64280af5f98d8ec82e988 schema:name dimensions_id
64 schema:value pub.1105928948
65 rdf:type schema:PropertyValue
66 N7168d1ee516d47dba56c0eda1d48451e rdf:first sg:person.01355447323.02
67 rdf:rest Necd0d1b14bef4fabbaa19d50c9ffa0a3
68 N8b9ae666e98e44aab18339532b2747f2 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N91d6c17dc7d840368282ff12e9d9581b rdf:first sg:person.015043036603.51
71 rdf:rest rdf:nil
72 Nb5005aa2c0564a638359b13602579dd4 schema:name doi
73 schema:value 10.1038/s41598-018-30136-y
74 rdf:type schema:PropertyValue
75 Nb74d09c5beaf4988921f7f9c05416c57 schema:issueNumber 1
76 rdf:type schema:PublicationIssue
77 Ndab98c2357be432190c8b2a1c6692d6b schema:name nlm_unique_id
78 schema:value 101563288
79 rdf:type schema:PropertyValue
80 Ndff4953eecf7483f96bba529ec4b5cec schema:volumeNumber 8
81 rdf:type schema:PublicationVolume
82 Necd0d1b14bef4fabbaa19d50c9ffa0a3 rdf:first sg:person.0764275504.39
83 rdf:rest N91d6c17dc7d840368282ff12e9d9581b
84 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
85 schema:name Mathematical Sciences
86 rdf:type schema:DefinedTerm
87 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
88 schema:name Pure Mathematics
89 rdf:type schema:DefinedTerm
90 sg:journal.1045337 schema:issn 2045-2322
91 schema:name Scientific Reports
92 rdf:type schema:Periodical
93 sg:person.01355447323.02 schema:affiliation https://www.grid.ac/institutes/grid.484678.1
94 schema:familyName Corral
95 schema:givenName Álvaro
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355447323.02
97 rdf:type schema:Person
98 sg:person.015043036603.51 schema:affiliation https://www.grid.ac/institutes/grid.473540.1
99 schema:familyName Alsedà
100 schema:givenName Lluís
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015043036603.51
102 rdf:type schema:Person
103 sg:person.0764275504.39 schema:affiliation https://www.grid.ac/institutes/grid.473540.1
104 schema:familyName Sardanyés
105 schema:givenName Josep
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764275504.39
107 rdf:type schema:Person
108 sg:pub.10.1007/s11071-014-1447-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016669304
109 https://doi.org/10.1007/s11071-014-1447-5
110 rdf:type schema:CreativeWork
111 sg:pub.10.1007/s12080-013-0187-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001074219
112 https://doi.org/10.1007/s12080-013-0187-3
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/35098000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039450839
115 https://doi.org/10.1038/35098000
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/451893a schema:sameAs https://app.dimensions.ai/details/publication/pub.1051490962
118 https://doi.org/10.1038/451893a
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/nature08227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019367407
121 https://doi.org/10.1038/nature08227
122 rdf:type schema:CreativeWork
123 sg:pub.10.1038/nphys3915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027639762
124 https://doi.org/10.1038/nphys3915
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1002/andp.201600402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090366107
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/0020-7683(93)90185-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1053513787
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/0301-0104(82)88054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044327943
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.physleta.2015.02.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008673469
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.tree.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037797055
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0375-9601(98)00665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021576444
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0378-4371(98)00389-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004971697
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1017/cbo9780511524288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098677990
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1017/cbo9780511803260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098677710
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.472860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058052954
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physreve.86.031144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048264311
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physreve.91.042122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060747355
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.66.3249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060802709
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.98.014301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006695333
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/revmodphys.90.031001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105523142
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.1101867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034497937
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.1203672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038107155
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1126/science.1210465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020204588
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1219805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040348336
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1142/9789814503419_0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088748416
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1142/p365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098905461
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1371/journal.pone.0161586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039375739
169 rdf:type schema:CreativeWork
170 https://www.grid.ac/institutes/grid.473540.1 schema:alternateName Barcelona Graduate School of Mathematics
171 schema:name Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain
172 Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain
173 Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.484678.1 schema:alternateName Complexity Science Hub Vienna
176 schema:name Barcelona Graduate School of Mathematics, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain
177 Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193, Bellaterra, Barcelona, Spain
178 Complexity Science Hub Vienna, Josefstädter Straβe 39, 1080, Vienna, Austria
179 Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...