Searching the overlap between network modules with specific betweeness (S2B) and its application to cross-disease analysis View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Marina L. Garcia-Vaquero, Margarida Gama-Carvalho, Javier De Las Rivas, Francisco R. Pinto

ABSTRACT

Discovering disease-associated genes (DG) is strategic for understanding pathological mechanisms. DGs form modules in protein interaction networks and diseases with common phenotypes share more DGs or have more closely interacting DGs. This prompted the development of Specific Betweenness (S2B) to find genes associated with two related diseases. S2B prioritizes genes frequently and specifically present in shortest paths linking two disease modules. Top S2B scores identified genes in the overlap of artificial network modules more than 80% of the times, even with incomplete or noisy knowledge. Applied to Amyotrophic Lateral Sclerosis and Spinal Muscular Atrophy, S2B candidates were enriched in biological processes previously associated with motor neuron degeneration. Some S2B candidates closely interacted in network cliques, suggesting common molecular mechanisms for the two diseases. S2B is a valuable tool for DG prediction, bringing new insights into pathological mechanisms. More generally, S2B can be applied to infer the overlap between other types of network modules, such as functional modules or context-specific subnetworks. An R package implementing S2B is publicly available at https://github.com/frpinto/S2B . More... »

PAGES

11555

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-29990-7

DOI

http://dx.doi.org/10.1038/s41598-018-29990-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105858739

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30068933


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, 1749-016, Campo Grande, C8 bdg, Lisboa, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia-Vaquero", 
        "givenName": "Marina L.", 
        "id": "sg:person.013003132133.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013003132133.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, 1749-016, Campo Grande, C8 bdg, Lisboa, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gama-Carvalho", 
        "givenName": "Margarida", 
        "id": "sg:person.01335561506.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335561506.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centro de Investigaci\u00f3n del C\u00e1ncer", 
          "id": "https://www.grid.ac/institutes/grid.428472.f", 
          "name": [
            "Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Cient\u00edficas (CSIC) and Universidad de Salamanca (USAL), Salamanca, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Las Rivas", 
        "givenName": "Javier", 
        "id": "sg:person.0614532474.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614532474.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, 1749-016, Campo Grande, C8 bdg, Lisboa, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinto", 
        "givenName": "Francisco R.", 
        "id": "sg:person.01213541647.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213541647.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmeth.1597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000352024", 
          "https://doi.org/10.1038/nmeth.1597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.3514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001237054", 
          "https://doi.org/10.1038/nn.3514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr400105n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001329543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/epi.15.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001564605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmr.2008.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001913964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/30.1.52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002327486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003691702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw363", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003691702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jnc.13945", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004144718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1004120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005210259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/421054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005891539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006733745", 
          "https://doi.org/10.1038/nature04209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006733745", 
          "https://doi.org/10.1038/nature04209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2014.06.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007050108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1611673113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008300464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2011.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008594620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fncel.2015.00041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009037369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009497307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2016.01.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009497307"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/biom5042935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010904382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.semcdb.2014.04.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013324302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2217/pme.10.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013602415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.10.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013710164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.10.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013710164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/database/bav028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016887040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017300707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn3961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017581054", 
          "https://doi.org/10.1038/nrn3961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018013656", 
          "https://doi.org/10.1038/ncomms5287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.224923.113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021400154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.17877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025244808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddg136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025254284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1750-1326-8-28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026301153", 
          "https://doi.org/10.1186/1750-1326-8-28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature16469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026594184", 
          "https://doi.org/10.1038/nature16469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/11.17.2037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029906163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2010.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032891382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2004.07.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032998938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033973493", 
          "https://doi.org/10.1038/ng1303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033973493", 
          "https://doi.org/10.1038/ng1303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw1055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034294930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2014.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036268506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2014.11.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036268506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/scitranslmed.3002166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036383344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/bs.ctdb.2016.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036798330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0065606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037102740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037383115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejme078114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037762122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038372929", 
          "https://doi.org/10.1038/nrg1383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg1383", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038372929", 
          "https://doi.org/10.1038/nrg1383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2013.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040867640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044086149", 
          "https://doi.org/10.1038/nmeth.1280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1097-2765(00)80177-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045533184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1752-0509-5-169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046944353", 
          "https://doi.org/10.1186/1752-0509-5-169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.artmed.2014.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052594066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jmg.2006.041376", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052810524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12918-016-0270-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052842584", 
          "https://doi.org/10.1186/s12918-016-0270-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0701361104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053516074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/19491034.2015.1004952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058414101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1257601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062470178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078730099", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1613181114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084152745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/hmg/ddx170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085367722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/171942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091916330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/171942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091916330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/171942", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091916330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.064626.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092479990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpbi.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099626420"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Discovering disease-associated genes (DG) is strategic for understanding pathological mechanisms. DGs form modules in protein interaction networks and diseases with common phenotypes share more DGs or have more closely interacting DGs. This prompted the development of Specific Betweenness (S2B) to find genes associated with two related diseases. S2B prioritizes genes frequently and specifically present in shortest paths linking two disease modules. Top S2B scores identified genes in the overlap of artificial network modules more than 80% of the times, even with incomplete or noisy knowledge. Applied to Amyotrophic Lateral Sclerosis and Spinal Muscular Atrophy, S2B candidates were enriched in biological processes previously associated with motor neuron degeneration. Some S2B candidates closely interacted in network cliques, suggesting common molecular mechanisms for the two diseases. S2B is a valuable tool for DG prediction, bringing new insights into pathological mechanisms. More generally, S2B can be applied to infer the overlap between other types of network modules, such as functional modules or context-specific subnetworks. An R package implementing S2B is publicly available at https://github.com/frpinto/S2B .", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-29990-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3712546", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3710890", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Searching the overlap between network modules with specific betweeness (S2B) and its application to cross-disease analysis", 
    "pagination": "11555", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "077ba9e8fec54ae2180141cd61b4dbf2135d3af0a9a6f49e7c967cb5afa28b0e"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30068933"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-29990-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105858739"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-29990-7", 
      "https://app.dimensions.ai/details/publication/pub.1105858739"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-29990-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29990-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29990-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29990-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29990-7'


 

This table displays all metadata directly associated to this object as RDF triples.

278 TRIPLES      21 PREDICATES      86 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-29990-7 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Na05c16f4970142f1b0a518700d346a4a
4 schema:citation sg:pub.10.1038/nature04209
5 sg:pub.10.1038/nature16469
6 sg:pub.10.1038/ncomms5287
7 sg:pub.10.1038/ng1303
8 sg:pub.10.1038/nmeth.1280
9 sg:pub.10.1038/nmeth.1597
10 sg:pub.10.1038/nn.3514
11 sg:pub.10.1038/nrg1383
12 sg:pub.10.1038/nrn3961
13 sg:pub.10.1186/1750-1326-8-28
14 sg:pub.10.1186/1752-0509-5-169
15 sg:pub.10.1186/s12918-016-0270-7
16 https://app.dimensions.ai/details/publication/pub.1078730099
17 https://doi.org/10.1002/cpbi.38
18 https://doi.org/10.1016/bs.ctdb.2016.07.004
19 https://doi.org/10.1016/j.ajhg.2008.02.013
20 https://doi.org/10.1016/j.artmed.2014.03.003
21 https://doi.org/10.1016/j.bbrc.2004.07.163
22 https://doi.org/10.1016/j.cell.2014.10.050
23 https://doi.org/10.1016/j.cell.2016.01.029
24 https://doi.org/10.1016/j.celrep.2013.11.012
25 https://doi.org/10.1016/j.copbio.2010.07.010
26 https://doi.org/10.1016/j.molcel.2011.04.026
27 https://doi.org/10.1016/j.neuron.2014.06.034
28 https://doi.org/10.1016/j.pmr.2008.05.001
29 https://doi.org/10.1016/j.semcdb.2014.04.026
30 https://doi.org/10.1016/j.ymeth.2014.11.020
31 https://doi.org/10.1016/s1097-2765(00)80177-x
32 https://doi.org/10.1021/cr400105n
33 https://doi.org/10.1056/nejme078114
34 https://doi.org/10.1073/pnas.0701361104
35 https://doi.org/10.1073/pnas.1611673113
36 https://doi.org/10.1073/pnas.1613181114
37 https://doi.org/10.1080/19491034.2015.1004952
38 https://doi.org/10.1086/421054
39 https://doi.org/10.1093/database/bav028
40 https://doi.org/10.1093/hmg/11.17.2037
41 https://doi.org/10.1093/hmg/ddg136
42 https://doi.org/10.1093/hmg/ddx170
43 https://doi.org/10.1093/nar/30.1.52
44 https://doi.org/10.1093/nar/gkw1055
45 https://doi.org/10.1093/nar/gkw363
46 https://doi.org/10.1101/171942
47 https://doi.org/10.1101/gad.224923.113
48 https://doi.org/10.1111/jnc.13945
49 https://doi.org/10.1126/science.1257601
50 https://doi.org/10.1126/scitranslmed.3002166
51 https://doi.org/10.1136/jmg.2006.041376
52 https://doi.org/10.1261/rna.064626.117
53 https://doi.org/10.1371/journal.pcbi.1000641
54 https://doi.org/10.1371/journal.pcbi.1004120
55 https://doi.org/10.1371/journal.pone.0065606
56 https://doi.org/10.2217/epi.15.1
57 https://doi.org/10.2217/pme.10.16
58 https://doi.org/10.3389/fncel.2015.00041
59 https://doi.org/10.3390/biom5042935
60 https://doi.org/10.7554/elife.17877
61 schema:datePublished 2018-12
62 schema:datePublishedReg 2018-12-01
63 schema:description Discovering disease-associated genes (DG) is strategic for understanding pathological mechanisms. DGs form modules in protein interaction networks and diseases with common phenotypes share more DGs or have more closely interacting DGs. This prompted the development of Specific Betweenness (S2B) to find genes associated with two related diseases. S2B prioritizes genes frequently and specifically present in shortest paths linking two disease modules. Top S2B scores identified genes in the overlap of artificial network modules more than 80% of the times, even with incomplete or noisy knowledge. Applied to Amyotrophic Lateral Sclerosis and Spinal Muscular Atrophy, S2B candidates were enriched in biological processes previously associated with motor neuron degeneration. Some S2B candidates closely interacted in network cliques, suggesting common molecular mechanisms for the two diseases. S2B is a valuable tool for DG prediction, bringing new insights into pathological mechanisms. More generally, S2B can be applied to infer the overlap between other types of network modules, such as functional modules or context-specific subnetworks. An R package implementing S2B is publicly available at https://github.com/frpinto/S2B .
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree true
67 schema:isPartOf N4bccaf1e4e12492787a2c4263a329d85
68 Na28a52356deb4e49a9467945767ed85e
69 sg:journal.1045337
70 schema:name Searching the overlap between network modules with specific betweeness (S2B) and its application to cross-disease analysis
71 schema:pagination 11555
72 schema:productId N0c30f0e8bd424332b0871400d9fdfbc1
73 N233abf6736f24c739acab6cc6c11e086
74 N7c5479337b87489e8a395df1d84a6fba
75 Nb4dca6afa0d5482c8f4ff96ff45a5709
76 Nd75c7012f48e4426940eead9dc36cf2d
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105858739
78 https://doi.org/10.1038/s41598-018-29990-7
79 schema:sdDatePublished 2019-04-10T21:48
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher N2f6f3a7eeea84ac18fa20b6dc343d2e5
82 schema:url https://www.nature.com/articles/s41598-018-29990-7
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N0c30f0e8bd424332b0871400d9fdfbc1 schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N233abf6736f24c739acab6cc6c11e086 schema:name doi
90 schema:value 10.1038/s41598-018-29990-7
91 rdf:type schema:PropertyValue
92 N2f6f3a7eeea84ac18fa20b6dc343d2e5 schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N44e832d09d1448c98bb9545f20ae44f0 rdf:first sg:person.0614532474.65
95 rdf:rest N5c4e555b022a4723ac8645c54b83c847
96 N4bccaf1e4e12492787a2c4263a329d85 schema:volumeNumber 8
97 rdf:type schema:PublicationVolume
98 N5c4e555b022a4723ac8645c54b83c847 rdf:first sg:person.01213541647.24
99 rdf:rest rdf:nil
100 N7c5479337b87489e8a395df1d84a6fba schema:name pubmed_id
101 schema:value 30068933
102 rdf:type schema:PropertyValue
103 Na05c16f4970142f1b0a518700d346a4a rdf:first sg:person.013003132133.17
104 rdf:rest Na2d5819591c247c390132df319f6e47a
105 Na28a52356deb4e49a9467945767ed85e schema:issueNumber 1
106 rdf:type schema:PublicationIssue
107 Na2d5819591c247c390132df319f6e47a rdf:first sg:person.01335561506.66
108 rdf:rest N44e832d09d1448c98bb9545f20ae44f0
109 Nb4dca6afa0d5482c8f4ff96ff45a5709 schema:name dimensions_id
110 schema:value pub.1105858739
111 rdf:type schema:PropertyValue
112 Nd75c7012f48e4426940eead9dc36cf2d schema:name readcube_id
113 schema:value 077ba9e8fec54ae2180141cd61b4dbf2135d3af0a9a6f49e7c967cb5afa28b0e
114 rdf:type schema:PropertyValue
115 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
116 schema:name Biological Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
119 schema:name Biochemistry and Cell Biology
120 rdf:type schema:DefinedTerm
121 sg:grant.3710890 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-29990-7
122 rdf:type schema:MonetaryGrant
123 sg:grant.3712546 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-29990-7
124 rdf:type schema:MonetaryGrant
125 sg:journal.1045337 schema:issn 2045-2322
126 schema:name Scientific Reports
127 rdf:type schema:Periodical
128 sg:person.01213541647.24 schema:affiliation https://www.grid.ac/institutes/grid.9983.b
129 schema:familyName Pinto
130 schema:givenName Francisco R.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213541647.24
132 rdf:type schema:Person
133 sg:person.013003132133.17 schema:affiliation https://www.grid.ac/institutes/grid.9983.b
134 schema:familyName Garcia-Vaquero
135 schema:givenName Marina L.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013003132133.17
137 rdf:type schema:Person
138 sg:person.01335561506.66 schema:affiliation https://www.grid.ac/institutes/grid.9983.b
139 schema:familyName Gama-Carvalho
140 schema:givenName Margarida
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01335561506.66
142 rdf:type schema:Person
143 sg:person.0614532474.65 schema:affiliation https://www.grid.ac/institutes/grid.428472.f
144 schema:familyName De Las Rivas
145 schema:givenName Javier
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614532474.65
147 rdf:type schema:Person
148 sg:pub.10.1038/nature04209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006733745
149 https://doi.org/10.1038/nature04209
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nature16469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026594184
152 https://doi.org/10.1038/nature16469
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/ncomms5287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018013656
155 https://doi.org/10.1038/ncomms5287
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/ng1303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033973493
158 https://doi.org/10.1038/ng1303
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/nmeth.1280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044086149
161 https://doi.org/10.1038/nmeth.1280
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/nmeth.1597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000352024
164 https://doi.org/10.1038/nmeth.1597
165 rdf:type schema:CreativeWork
166 sg:pub.10.1038/nn.3514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001237054
167 https://doi.org/10.1038/nn.3514
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/nrg1383 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038372929
170 https://doi.org/10.1038/nrg1383
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/nrn3961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017581054
173 https://doi.org/10.1038/nrn3961
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1750-1326-8-28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026301153
176 https://doi.org/10.1186/1750-1326-8-28
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1752-0509-5-169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046944353
179 https://doi.org/10.1186/1752-0509-5-169
180 rdf:type schema:CreativeWork
181 sg:pub.10.1186/s12918-016-0270-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052842584
182 https://doi.org/10.1186/s12918-016-0270-7
183 rdf:type schema:CreativeWork
184 https://app.dimensions.ai/details/publication/pub.1078730099 schema:CreativeWork
185 https://doi.org/10.1002/cpbi.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099626420
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/bs.ctdb.2016.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036798330
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.ajhg.2008.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037383115
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.artmed.2014.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052594066
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.bbrc.2004.07.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032998938
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.cell.2014.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013710164
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.cell.2016.01.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009497307
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.celrep.2013.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040867640
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.copbio.2010.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032891382
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.molcel.2011.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594620
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.neuron.2014.06.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007050108
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.pmr.2008.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001913964
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.semcdb.2014.04.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013324302
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.ymeth.2014.11.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036268506
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s1097-2765(00)80177-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045533184
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1021/cr400105n schema:sameAs https://app.dimensions.ai/details/publication/pub.1001329543
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1056/nejme078114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037762122
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1073/pnas.0701361104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053516074
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1073/pnas.1611673113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008300464
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1073/pnas.1613181114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084152745
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1080/19491034.2015.1004952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058414101
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1086/421054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005891539
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1093/database/bav028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016887040
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1093/hmg/11.17.2037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029906163
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1093/hmg/ddg136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025254284
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/hmg/ddx170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085367722
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/nar/30.1.52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002327486
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/nar/gkw1055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034294930
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/nar/gkw363 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003691702
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1101/171942 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091916330
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1101/gad.224923.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021400154
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1111/jnc.13945 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004144718
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1126/science.1257601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062470178
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1126/scitranslmed.3002166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036383344
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1136/jmg.2006.041376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052810524
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1261/rna.064626.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092479990
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1371/journal.pcbi.1000641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017300707
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1371/journal.pcbi.1004120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005210259
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1371/journal.pone.0065606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037102740
262 rdf:type schema:CreativeWork
263 https://doi.org/10.2217/epi.15.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001564605
264 rdf:type schema:CreativeWork
265 https://doi.org/10.2217/pme.10.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013602415
266 rdf:type schema:CreativeWork
267 https://doi.org/10.3389/fncel.2015.00041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009037369
268 rdf:type schema:CreativeWork
269 https://doi.org/10.3390/biom5042935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010904382
270 rdf:type schema:CreativeWork
271 https://doi.org/10.7554/elife.17877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025244808
272 rdf:type schema:CreativeWork
273 https://www.grid.ac/institutes/grid.428472.f schema:alternateName Centro de Investigación del Cáncer
274 schema:name Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and Universidad de Salamanca (USAL), Salamanca, Spain
275 rdf:type schema:Organization
276 https://www.grid.ac/institutes/grid.9983.b schema:alternateName University of Lisbon
277 schema:name University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, 1749-016, Campo Grande, C8 bdg, Lisboa, Portugal
278 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...