Chiral visible light metasurface patterned in monocrystalline silicon by focused ion beam View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Maxim V. Gorkunov, Oleg Y. Rogov, Alexey V. Kondratov, Vladimir V. Artemov, Radmir V. Gainutdinov, Alexander A. Ezhov

ABSTRACT

High refractive index makes silicon the optimal platform for dielectric metasurfaces capable of versatile control of light. Among various silicon modifications, its monocrystalline form has the weakest visible light absorption but requires a careful choice of the fabrication technique to avoid damage, contamination or amorphization. Presently prevailing chemical etching can shape thin silicon layers into two-dimensional patterns consisting of strips and posts with vertical walls and equal height. Here, the possibility to create silicon nanostructure of truly tree-dimensional shape by means of the focused ion beam lithography is explored, and a 300 nm thin film of monocrystalline epitaxial silicon on sapphire is patterned with a chiral nanoscale relief. It is demonstrated that exposing silicon to the ion beam causes a substantial drop of the visible transparency, which, however, is completely restored by annealing with oxidation of the damaged surface layer. As a result, the fabricated chiral metasurface combines high (50-80%) transmittance with the circular dichroism of up to 0.5 and the optical activity of up to 20° in the visible range. Being also remarkably durable, it possesses crystal-grade hardness, heat resistance up to 1000 °C and the inertness of glass. More... »

PAGES

11623

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-29977-4

DOI

http://dx.doi.org/10.1038/s41598-018-29977-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105886972

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30072737


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Shubnikov Institute of Crystallography, Federal Scientific Research Centre \u201cCrystallography and Photonics\u201d, Russian Academy of Sciences, 119333, Moscow, Russia", 
            "National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gorkunov", 
        "givenName": "Maxim V.", 
        "id": "sg:person.011067165125.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011067165125.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Shubnikov Institute of Crystallography, Federal Scientific Research Centre \u201cCrystallography and Photonics\u201d, Russian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogov", 
        "givenName": "Oleg Y.", 
        "id": "sg:person.010124453457.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010124453457.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Shubnikov Institute of Crystallography, Federal Scientific Research Centre \u201cCrystallography and Photonics\u201d, Russian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kondratov", 
        "givenName": "Alexey V.", 
        "id": "sg:person.015450030125.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450030125.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Shubnikov Institute of Crystallography, Federal Scientific Research Centre \u201cCrystallography and Photonics\u201d, Russian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Artemov", 
        "givenName": "Vladimir V.", 
        "id": "sg:person.014543331362.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543331362.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Shubnikov Institute of Crystallography, Federal Scientific Research Centre \u201cCrystallography and Photonics\u201d, Russian Academy of Sciences, 119333, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gainutdinov", 
        "givenName": "Radmir V.", 
        "id": "sg:person.010602504341.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602504341.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Shubnikov Institute of Crystallography, Federal Scientific Research Centre \u201cCrystallography and Photonics\u201d, Russian Academy of Sciences, 119333, Moscow, Russia", 
            "Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia", 
            "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ezhov", 
        "givenName": "Alexander A.", 
        "id": "sg:person.01230763763.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230763763.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nnano.2015.304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003765592", 
          "https://doi.org/10.1038/nnano.2015.304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b02989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004251590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2015.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006249639", 
          "https://doi.org/10.1038/nnano.2015.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaf6644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008864030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.metmat.2008.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011573326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/18/19/195305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012221156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/18/19/195305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012221156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-3467(92)90015-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014452585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-3467(92)90015-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014452585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.125105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018259744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.125105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018259744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep09273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023353546", 
          "https://doi.org/10.1038/srep09273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4880798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024103381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201400584", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029034195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4876964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031046050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037112953", 
          "https://doi.org/10.1038/35570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl301594s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038050489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b01727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038756337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4258/11/7/074004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039600870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1013794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042687526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1013794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042687526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046409067", 
          "https://doi.org/10.1038/ncomms4402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1048899232", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1048899232", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0022-2720.2004.01327.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049531581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/27/48/485206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049939799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050664103", 
          "https://doi.org/10.1038/ncomms4892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4949007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050941238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1210713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051807434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.644491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051926887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.644491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051926887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2114204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053170420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b04373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055139022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn303680k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056224722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2356311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057851689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3664634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057995035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.3017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.5.3017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060571978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.195418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.195418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1501258", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062439999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aag2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062668357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.33.006053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065109287"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.20.000569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065160308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.007189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065187627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.17.000688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065189445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.41.001913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065239028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/optica.3.001504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065248497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep41893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083396351", 
          "https://doi.org/10.1038/srep41893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083426696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultramic.2017.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085463752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201701352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085880751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.8.014019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090860913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevapplied.8.014019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090860913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jmi.12644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092060883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icton.2007.4296183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094538589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/nano.2015.7388897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095121785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511735271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511535468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098679237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.7b04646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100619518"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "High refractive index makes silicon the optimal platform for dielectric metasurfaces capable of versatile control of light. Among various silicon modifications, its monocrystalline form has the weakest visible light absorption but requires a careful choice of the fabrication technique to avoid damage, contamination or amorphization. Presently prevailing chemical etching can shape thin silicon layers into two-dimensional patterns consisting of strips and posts with vertical walls and equal height. Here, the possibility to create silicon nanostructure of truly tree-dimensional shape by means of the focused ion beam lithography is explored, and a 300\u2009nm thin film of monocrystalline epitaxial silicon on sapphire is patterned with a chiral nanoscale relief. It is demonstrated that exposing silicon to the ion beam causes a substantial drop of the visible transparency, which, however, is completely restored by annealing with oxidation of the damaged surface layer. As a result, the fabricated chiral metasurface combines high (50-80%) transmittance with the circular dichroism of up to 0.5 and the optical activity of up to 20\u00b0 in the visible range. Being also remarkably durable, it possesses crystal-grade hardness, heat resistance up to 1000\u2009\u00b0C and the inertness of glass.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-29977-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Chiral visible light metasurface patterned in monocrystalline silicon by focused ion beam", 
    "pagination": "11623", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0676c41bc259c1f1f1571433a017baac2ecde9ddc2b2b86289462e4dfa797a92"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30072737"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-29977-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105886972"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-29977-4", 
      "https://app.dimensions.ai/details/publication/pub.1105886972"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-29977-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29977-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29977-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29977-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29977-4'


 

This table displays all metadata directly associated to this object as RDF triples.

271 TRIPLES      21 PREDICATES      81 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-29977-4 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N3ca603cd3f2c46d6b08f7744429632d3
4 schema:citation sg:pub.10.1038/35570
5 sg:pub.10.1038/ncomms4402
6 sg:pub.10.1038/ncomms4892
7 sg:pub.10.1038/nnano.2015.186
8 sg:pub.10.1038/nnano.2015.304
9 sg:pub.10.1038/srep09273
10 sg:pub.10.1038/srep41893
11 https://app.dimensions.ai/details/publication/pub.1048899232
12 https://doi.org/10.1002/adma.201701352
13 https://doi.org/10.1002/adom.201400584
14 https://doi.org/10.1016/0925-3467(92)90015-f
15 https://doi.org/10.1016/j.metmat.2008.03.004
16 https://doi.org/10.1016/j.ultramic.2017.05.013
17 https://doi.org/10.1017/cbo9780511535468
18 https://doi.org/10.1017/cbo9780511735271
19 https://doi.org/10.1021/acs.nanolett.5b01727
20 https://doi.org/10.1021/acs.nanolett.5b02989
21 https://doi.org/10.1021/acs.nanolett.5b04373
22 https://doi.org/10.1021/acs.nanolett.7b04646
23 https://doi.org/10.1021/acsphotonics.6b00436
24 https://doi.org/10.1021/acsphotonics.6b00740
25 https://doi.org/10.1021/nl1013794
26 https://doi.org/10.1021/nl301594s
27 https://doi.org/10.1021/nn303680k
28 https://doi.org/10.1063/1.2356311
29 https://doi.org/10.1063/1.3664634
30 https://doi.org/10.1063/1.4876964
31 https://doi.org/10.1063/1.4880798
32 https://doi.org/10.1063/1.4949007
33 https://doi.org/10.1088/0957-4484/18/19/195305
34 https://doi.org/10.1088/0957-4484/27/48/485206
35 https://doi.org/10.1088/1464-4258/11/7/074004
36 https://doi.org/10.1103/physrevapplied.8.014019
37 https://doi.org/10.1103/physrevb.5.3017
38 https://doi.org/10.1103/physrevb.89.125105
39 https://doi.org/10.1103/physrevb.93.195418
40 https://doi.org/10.1109/icton.2007.4296183
41 https://doi.org/10.1109/nano.2015.7388897
42 https://doi.org/10.1111/j.0022-2720.2004.01327.x
43 https://doi.org/10.1111/jmi.12644
44 https://doi.org/10.1117/12.644491
45 https://doi.org/10.1126/sciadv.1501258
46 https://doi.org/10.1126/science.1210713
47 https://doi.org/10.1126/science.aaf6644
48 https://doi.org/10.1126/science.aag2472
49 https://doi.org/10.1149/1.2114204
50 https://doi.org/10.1364/ao.33.006053
51 https://doi.org/10.1364/josaa.20.000569
52 https://doi.org/10.1364/oe.16.007189
53 https://doi.org/10.1364/oe.17.000688
54 https://doi.org/10.1364/ol.41.001913
55 https://doi.org/10.1364/optica.3.001504
56 schema:datePublished 2018-12
57 schema:datePublishedReg 2018-12-01
58 schema:description High refractive index makes silicon the optimal platform for dielectric metasurfaces capable of versatile control of light. Among various silicon modifications, its monocrystalline form has the weakest visible light absorption but requires a careful choice of the fabrication technique to avoid damage, contamination or amorphization. Presently prevailing chemical etching can shape thin silicon layers into two-dimensional patterns consisting of strips and posts with vertical walls and equal height. Here, the possibility to create silicon nanostructure of truly tree-dimensional shape by means of the focused ion beam lithography is explored, and a 300 nm thin film of monocrystalline epitaxial silicon on sapphire is patterned with a chiral nanoscale relief. It is demonstrated that exposing silicon to the ion beam causes a substantial drop of the visible transparency, which, however, is completely restored by annealing with oxidation of the damaged surface layer. As a result, the fabricated chiral metasurface combines high (50-80%) transmittance with the circular dichroism of up to 0.5 and the optical activity of up to 20° in the visible range. Being also remarkably durable, it possesses crystal-grade hardness, heat resistance up to 1000 °C and the inertness of glass.
59 schema:genre research_article
60 schema:inLanguage en
61 schema:isAccessibleForFree true
62 schema:isPartOf N02ee688cea334d5c9f90b7eeb5ee6c61
63 N846339a6fdb34ea8a87dcc3f2c0e61a4
64 sg:journal.1045337
65 schema:name Chiral visible light metasurface patterned in monocrystalline silicon by focused ion beam
66 schema:pagination 11623
67 schema:productId N03fea5babf8c4448bfcd1a4debfaee5e
68 N3260ff150e63400ebdc80c31572cc35e
69 N46c2dfdcf4814695b52524a0773be9e9
70 Nd5845baa62bd4df8b912670bcd3a80e4
71 Nfaa96dc2f5e042f7b294da0010edf278
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105886972
73 https://doi.org/10.1038/s41598-018-29977-4
74 schema:sdDatePublished 2019-04-10T15:15
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N835c09acb6114b25a033fc3ab74b63cf
77 schema:url https://www.nature.com/articles/s41598-018-29977-4
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N02ee688cea334d5c9f90b7eeb5ee6c61 schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 N03fea5babf8c4448bfcd1a4debfaee5e schema:name doi
84 schema:value 10.1038/s41598-018-29977-4
85 rdf:type schema:PropertyValue
86 N3260ff150e63400ebdc80c31572cc35e schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N3ca603cd3f2c46d6b08f7744429632d3 rdf:first sg:person.011067165125.54
90 rdf:rest N96c28f7a64e045bab622084914456338
91 N46c2dfdcf4814695b52524a0773be9e9 schema:name readcube_id
92 schema:value 0676c41bc259c1f1f1571433a017baac2ecde9ddc2b2b86289462e4dfa797a92
93 rdf:type schema:PropertyValue
94 N832f6279a85e4d2a845adab3eb8df913 rdf:first sg:person.015450030125.69
95 rdf:rest Nc1bd415384ce45f3b368db049adbb982
96 N835c09acb6114b25a033fc3ab74b63cf schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N846339a6fdb34ea8a87dcc3f2c0e61a4 schema:volumeNumber 8
99 rdf:type schema:PublicationVolume
100 N96c28f7a64e045bab622084914456338 rdf:first sg:person.010124453457.00
101 rdf:rest N832f6279a85e4d2a845adab3eb8df913
102 Nc1bd415384ce45f3b368db049adbb982 rdf:first sg:person.014543331362.87
103 rdf:rest Nd907df4f04884ff2b7ce5c737dc25946
104 Nc75fb44809b54f68bf129ed03cca4a45 rdf:first sg:person.01230763763.87
105 rdf:rest rdf:nil
106 Nd5845baa62bd4df8b912670bcd3a80e4 schema:name dimensions_id
107 schema:value pub.1105886972
108 rdf:type schema:PropertyValue
109 Nd907df4f04884ff2b7ce5c737dc25946 rdf:first sg:person.010602504341.18
110 rdf:rest Nc75fb44809b54f68bf129ed03cca4a45
111 Nfaa96dc2f5e042f7b294da0010edf278 schema:name pubmed_id
112 schema:value 30072737
113 rdf:type schema:PropertyValue
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
118 schema:name Other Physical Sciences
119 rdf:type schema:DefinedTerm
120 sg:journal.1045337 schema:issn 2045-2322
121 schema:name Scientific Reports
122 rdf:type schema:Periodical
123 sg:person.010124453457.00 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
124 schema:familyName Rogov
125 schema:givenName Oleg Y.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010124453457.00
127 rdf:type schema:Person
128 sg:person.010602504341.18 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
129 schema:familyName Gainutdinov
130 schema:givenName Radmir V.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010602504341.18
132 rdf:type schema:Person
133 sg:person.011067165125.54 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
134 schema:familyName Gorkunov
135 schema:givenName Maxim V.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011067165125.54
137 rdf:type schema:Person
138 sg:person.01230763763.87 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
139 schema:familyName Ezhov
140 schema:givenName Alexander A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230763763.87
142 rdf:type schema:Person
143 sg:person.014543331362.87 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
144 schema:familyName Artemov
145 schema:givenName Vladimir V.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014543331362.87
147 rdf:type schema:Person
148 sg:person.015450030125.69 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
149 schema:familyName Kondratov
150 schema:givenName Alexey V.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015450030125.69
152 rdf:type schema:Person
153 sg:pub.10.1038/35570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037112953
154 https://doi.org/10.1038/35570
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/ncomms4402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046409067
157 https://doi.org/10.1038/ncomms4402
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/ncomms4892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050664103
160 https://doi.org/10.1038/ncomms4892
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nnano.2015.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006249639
163 https://doi.org/10.1038/nnano.2015.186
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nnano.2015.304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003765592
166 https://doi.org/10.1038/nnano.2015.304
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/srep09273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023353546
169 https://doi.org/10.1038/srep09273
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep41893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083396351
172 https://doi.org/10.1038/srep41893
173 rdf:type schema:CreativeWork
174 https://app.dimensions.ai/details/publication/pub.1048899232 schema:CreativeWork
175 https://doi.org/10.1002/adma.201701352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085880751
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/adom.201400584 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029034195
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0925-3467(92)90015-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1014452585
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.metmat.2008.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011573326
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/j.ultramic.2017.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085463752
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1017/cbo9780511535468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098679237
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1017/cbo9780511735271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667094
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/acs.nanolett.5b01727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038756337
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/acs.nanolett.5b02989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004251590
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1021/acs.nanolett.5b04373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121160
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/acs.nanolett.7b04646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100619518
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/acsphotonics.6b00436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055139022
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/acsphotonics.6b00740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083426696
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/nl1013794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042687526
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/nl301594s schema:sameAs https://app.dimensions.ai/details/publication/pub.1038050489
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/nn303680k schema:sameAs https://app.dimensions.ai/details/publication/pub.1056224722
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1063/1.2356311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057851689
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1063/1.3664634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057995035
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1063/1.4876964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031046050
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1063/1.4880798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024103381
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1063/1.4949007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050941238
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1088/0957-4484/18/19/195305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012221156
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1088/0957-4484/27/48/485206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049939799
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1088/1464-4258/11/7/074004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039600870
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevapplied.8.014019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090860913
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevb.5.3017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060571978
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevb.89.125105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018259744
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevb.93.195418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650344
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1109/icton.2007.4296183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094538589
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1109/nano.2015.7388897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095121785
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1111/j.0022-2720.2004.01327.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049531581
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1111/jmi.12644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092060883
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1117/12.644491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051926887
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1126/sciadv.1501258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062439999
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1126/science.1210713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051807434
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1126/science.aaf6644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008864030
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1126/science.aag2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062668357
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1149/1.2114204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053170420
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1364/ao.33.006053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065109287
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1364/josaa.20.000569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065160308
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1364/oe.16.007189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065187627
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1364/oe.17.000688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065189445
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1364/ol.41.001913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065239028
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1364/optica.3.001504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065248497
262 rdf:type schema:CreativeWork
263 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
264 schema:name National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
265 Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333, Moscow, Russia
266 rdf:type schema:Organization
267 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
268 schema:name Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
269 Shubnikov Institute of Crystallography, Federal Scientific Research Centre “Crystallography and Photonics”, Russian Academy of Sciences, 119333, Moscow, Russia
270 Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science, 119991, Moscow, Russia
271 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...