Enhancing quantum phase transitions in the critical point of Extended TC-Dicke model via Stark effect View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Ahmed Salah, A. S. Abdel-Rady, Abdel-Nasser A. Osman, Samia. S. A. Hassan

ABSTRACT

A system of N two-level atoms, Tavis-Cummings Dicke (TC-Dicke) model, interacting with a one-mode electromagnetic radiation field in the presence of the Stark shifts is studied, which is expected to predict new phenomena that are not explored in the original TC-Dicke model. We obtained the potential energy surface of the system using a trial state the direct product of coherent states in each subspace. In the frame of mean-field approaches, the variational energy is evaluated as the expectation value of the Hamiltonian for this state. The order of the quantum phase transitions is determined explicitly and numerically. We estimate the ground-state energy and the macroscopic excitations in the superradiant phase. Moreover, we investigated the critical properties of the TC-Dicke model in the classical spin limit and coherent state. We observed that in the thermodynamic limit, the energy surface takes a simple form a direct description of the phase transition. Moreover, it is found that when the microwave amplitude changes the new phase transition occurs with the Stark shift. The analytical solutions and numerical results, which appear in this paper are agreement with our paper which published recently in Int. J. Mod. Phys. B when we studied the same model using a different coherent state. More... »

PAGES

11633

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-29902-9

DOI

http://dx.doi.org/10.1038/s41598-018-29902-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105886955

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30072781


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "International Centre for Theoretical Physics", 
          "id": "https://www.grid.ac/institutes/grid.419330.c", 
          "name": [
            "Mathematics and Theoretical Physics Department, Nuclear Research Center (NRC), Atomic Energy Authority, 13759, Cairo, Egypt", 
            "Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt", 
            "Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera, 11 I - 34151, Trieste, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salah", 
        "givenName": "Ahmed", 
        "id": "sg:person.07646173513.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646173513.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South Valley University", 
          "id": "https://www.grid.ac/institutes/grid.412707.7", 
          "name": [
            "Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Abdel-Rady", 
        "givenName": "A. S.", 
        "id": "sg:person.012441731725.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012441731725.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "South Valley University", 
          "id": "https://www.grid.ac/institutes/grid.412707.7", 
          "name": [
            "Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osman", 
        "givenName": "Abdel-Nasser A.", 
        "id": "sg:person.015534777743.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015534777743.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Egyptian Atomic Energy Authority", 
          "id": "https://www.grid.ac/institutes/grid.429648.5", 
          "name": [
            "Mathematics and Theoretical Physics Department, Nuclear Research Center (NRC), Atomic Energy Authority, 13759, Cairo, Egypt"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassan", 
        "givenName": "Samia. S. A.", 
        "id": "sg:person.014632253325.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632253325.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1140/epjb/e2005-00153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005860656", 
          "https://doi.org/10.1140/epjb/e2005-00153-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2005-00153-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005860656", 
          "https://doi.org/10.1140/epjb/e2005-00153-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/6/063027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007107032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/6/063027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007107032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008973041", 
          "https://doi.org/10.1038/nature06331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.140402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013295901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.140402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013295901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.023815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015680145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.74.023815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015680145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.066203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021921669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.67.066203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021921669"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029202339", 
          "https://doi.org/10.1038/nature06120"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031435740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.130401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031435740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034025717", 
          "https://doi.org/10.1038/nature09009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.044101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034618848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.044101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034618848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035787773", 
          "https://doi.org/10.1038/ncomms1069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035787773", 
          "https://doi.org/10.1038/ncomms1069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-4916(73)90039-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037335968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.113602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040293571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.113602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040293571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/39/16/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044210318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.013804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046281967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.75.013804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046281967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.170.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.170.379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060438505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.93.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060461988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.93.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060461988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.7.831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.7.831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.033808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.033808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060500580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.033601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060508498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.033601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060508498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.033813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060512834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.90.033813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060512834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.033850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.94.033850", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060516740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.046220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060738859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.79.046220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060738859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.043003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.043003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060759314"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979217500916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083938375"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "A system of N two-level atoms, Tavis-Cummings Dicke (TC-Dicke) model, interacting with a one-mode electromagnetic radiation field in the presence of the Stark shifts is studied, which is expected to predict new phenomena that are not explored in the original TC-Dicke model. We obtained the potential energy surface of the system using a trial state the direct product of coherent states in each subspace. In the frame of mean-field approaches, the variational energy is evaluated as the expectation value of the Hamiltonian for this state. The order of the quantum phase transitions is determined explicitly and numerically. We estimate the ground-state energy and the macroscopic excitations in the superradiant phase. Moreover, we investigated the critical properties of the TC-Dicke model in the classical spin limit and coherent state. We observed that in the thermodynamic limit, the energy surface takes a simple form a direct description of the phase transition. Moreover, it is found that when the microwave amplitude changes the new phase transition occurs with the Stark shift. The analytical solutions and numerical results, which appear in this paper are agreement with our paper which published recently in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-29902-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Enhancing quantum phase transitions in the critical point of Extended TC-Dicke model via Stark effect", 
    "pagination": "11633", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1816c2ac28ebc5477efac42c861dc1091c7f394ae8fae4c423fe134c1c66b1b2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30072781"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-29902-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105886955"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-29902-9", 
      "https://app.dimensions.ai/details/publication/pub.1105886955"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-29902-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29902-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29902-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29902-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29902-9'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      54 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-29902-9 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N692712b131854c2293d9fce909c0bf97
4 schema:citation sg:pub.10.1038/nature06120
5 sg:pub.10.1038/nature06331
6 sg:pub.10.1038/nature09009
7 sg:pub.10.1038/ncomms1069
8 sg:pub.10.1140/epjb/e2005-00153-0
9 https://doi.org/10.1016/0003-4916(73)90039-0
10 https://doi.org/10.1088/0953-4075/39/16/014
11 https://doi.org/10.1088/1367-2630/11/6/063027
12 https://doi.org/10.1103/physrev.170.379
13 https://doi.org/10.1103/physrev.93.99
14 https://doi.org/10.1103/physreva.7.831
15 https://doi.org/10.1103/physreva.70.033808
16 https://doi.org/10.1103/physreva.74.023815
17 https://doi.org/10.1103/physreva.75.013804
18 https://doi.org/10.1103/physreva.83.033601
19 https://doi.org/10.1103/physreva.90.033813
20 https://doi.org/10.1103/physreva.94.033850
21 https://doi.org/10.1103/physreve.67.066203
22 https://doi.org/10.1103/physreve.79.046220
23 https://doi.org/10.1103/physrevlett.104.130401
24 https://doi.org/10.1103/physrevlett.107.113602
25 https://doi.org/10.1103/physrevlett.107.140402
26 https://doi.org/10.1103/physrevlett.108.043003
27 https://doi.org/10.1103/physrevlett.90.044101
28 https://doi.org/10.1142/s0217979217500916
29 schema:datePublished 2018-12
30 schema:datePublishedReg 2018-12-01
31 schema:description A system of N two-level atoms, Tavis-Cummings Dicke (TC-Dicke) model, interacting with a one-mode electromagnetic radiation field in the presence of the Stark shifts is studied, which is expected to predict new phenomena that are not explored in the original TC-Dicke model. We obtained the potential energy surface of the system using a trial state the direct product of coherent states in each subspace. In the frame of mean-field approaches, the variational energy is evaluated as the expectation value of the Hamiltonian for this state. The order of the quantum phase transitions is determined explicitly and numerically. We estimate the ground-state energy and the macroscopic excitations in the superradiant phase. Moreover, we investigated the critical properties of the TC-Dicke model in the classical spin limit and coherent state. We observed that in the thermodynamic limit, the energy surface takes a simple form a direct description of the phase transition. Moreover, it is found that when the microwave amplitude changes the new phase transition occurs with the Stark shift. The analytical solutions and numerical results, which appear in this paper are agreement with our paper which published recently in Int. J. Mod. Phys. B when we studied the same model using a different coherent state.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N01f47924c4a6427694b1643fc68cdce9
36 N632915273b374c88a4b9e4da05426373
37 sg:journal.1045337
38 schema:name Enhancing quantum phase transitions in the critical point of Extended TC-Dicke model via Stark effect
39 schema:pagination 11633
40 schema:productId N4e287ba2f29245f4a9d9aefb7913c22d
41 N718ac37785b1468b94f324c09b4d414e
42 Nbda99a1575804c169b4cd33668dca1e6
43 Nf2cb0f40108d46b18635b6e93b464495
44 Nf47cbed5faaf4401b7cf3a94cdab95cc
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105886955
46 https://doi.org/10.1038/s41598-018-29902-9
47 schema:sdDatePublished 2019-04-10T14:19
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Nfacadee195594c518fa9067e12afd4f5
50 schema:url https://www.nature.com/articles/s41598-018-29902-9
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N01f47924c4a6427694b1643fc68cdce9 schema:issueNumber 1
55 rdf:type schema:PublicationIssue
56 N1558665c1a7e48e3be03af02ac78abdd rdf:first sg:person.015534777743.43
57 rdf:rest N2dd63dc301b742c69c06cc3819f7abaa
58 N2dd63dc301b742c69c06cc3819f7abaa rdf:first sg:person.014632253325.06
59 rdf:rest rdf:nil
60 N4e287ba2f29245f4a9d9aefb7913c22d schema:name nlm_unique_id
61 schema:value 101563288
62 rdf:type schema:PropertyValue
63 N632915273b374c88a4b9e4da05426373 schema:volumeNumber 8
64 rdf:type schema:PublicationVolume
65 N692712b131854c2293d9fce909c0bf97 rdf:first sg:person.07646173513.14
66 rdf:rest N78007a372b6543be83b9c68ba5f8f05d
67 N718ac37785b1468b94f324c09b4d414e schema:name doi
68 schema:value 10.1038/s41598-018-29902-9
69 rdf:type schema:PropertyValue
70 N78007a372b6543be83b9c68ba5f8f05d rdf:first sg:person.012441731725.57
71 rdf:rest N1558665c1a7e48e3be03af02ac78abdd
72 Nbda99a1575804c169b4cd33668dca1e6 schema:name dimensions_id
73 schema:value pub.1105886955
74 rdf:type schema:PropertyValue
75 Nf2cb0f40108d46b18635b6e93b464495 schema:name readcube_id
76 schema:value 1816c2ac28ebc5477efac42c861dc1091c7f394ae8fae4c423fe134c1c66b1b2
77 rdf:type schema:PropertyValue
78 Nf47cbed5faaf4401b7cf3a94cdab95cc schema:name pubmed_id
79 schema:value 30072781
80 rdf:type schema:PropertyValue
81 Nfacadee195594c518fa9067e12afd4f5 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
84 schema:name Physical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
87 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
88 rdf:type schema:DefinedTerm
89 sg:journal.1045337 schema:issn 2045-2322
90 schema:name Scientific Reports
91 rdf:type schema:Periodical
92 sg:person.012441731725.57 schema:affiliation https://www.grid.ac/institutes/grid.412707.7
93 schema:familyName Abdel-Rady
94 schema:givenName A. S.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012441731725.57
96 rdf:type schema:Person
97 sg:person.014632253325.06 schema:affiliation https://www.grid.ac/institutes/grid.429648.5
98 schema:familyName Hassan
99 schema:givenName Samia. S. A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014632253325.06
101 rdf:type schema:Person
102 sg:person.015534777743.43 schema:affiliation https://www.grid.ac/institutes/grid.412707.7
103 schema:familyName Osman
104 schema:givenName Abdel-Nasser A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015534777743.43
106 rdf:type schema:Person
107 sg:person.07646173513.14 schema:affiliation https://www.grid.ac/institutes/grid.419330.c
108 schema:familyName Salah
109 schema:givenName Ahmed
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07646173513.14
111 rdf:type schema:Person
112 sg:pub.10.1038/nature06120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029202339
113 https://doi.org/10.1038/nature06120
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nature06331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008973041
116 https://doi.org/10.1038/nature06331
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nature09009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034025717
119 https://doi.org/10.1038/nature09009
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/ncomms1069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035787773
122 https://doi.org/10.1038/ncomms1069
123 rdf:type schema:CreativeWork
124 sg:pub.10.1140/epjb/e2005-00153-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005860656
125 https://doi.org/10.1140/epjb/e2005-00153-0
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0003-4916(73)90039-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037335968
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/0953-4075/39/16/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044210318
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/1367-2630/11/6/063027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007107032
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrev.170.379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060438505
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrev.93.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060461988
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physreva.7.831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060500350
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreva.70.033808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060500580
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreva.74.023815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015680145
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreva.75.013804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046281967
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physreva.83.033601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060508498
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physreva.90.033813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060512834
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreva.94.033850 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060516740
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreve.67.066203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021921669
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physreve.79.046220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060738859
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevlett.104.130401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031435740
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.107.113602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040293571
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.107.140402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013295901
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.108.043003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060759314
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.90.044101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034618848
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1142/s0217979217500916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083938375
166 rdf:type schema:CreativeWork
167 https://www.grid.ac/institutes/grid.412707.7 schema:alternateName South Valley University
168 schema:name Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.419330.c schema:alternateName International Centre for Theoretical Physics
171 schema:name Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera, 11 I - 34151, Trieste, Italy
172 Mathematics Department, Faculty of Science, South Valley University, Qena, Egypt
173 Mathematics and Theoretical Physics Department, Nuclear Research Center (NRC), Atomic Energy Authority, 13759, Cairo, Egypt
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.429648.5 schema:alternateName Egyptian Atomic Energy Authority
176 schema:name Mathematics and Theoretical Physics Department, Nuclear Research Center (NRC), Atomic Energy Authority, 13759, Cairo, Egypt
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...