Predicting El Niño in 2014 and 2015 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Sarah Ineson, Magdalena A. Balmaseda, Michael K. Davey, Damien Decremer, Nick J. Dunstone, Margaret Gordon, Hong-Li Ren, Adam A. Scaife, Antje Weisheimer

ABSTRACT

Early in 2014 several forecast systems were suggesting a strong 1997/98-like El Niño event for the following northern hemisphere winter 2014/15. However the eventual outcome was a modest warming. In contrast, winter 2015/16 saw one of the strongest El Niño events on record. Here we assess the ability of two operational seasonal prediction systems to forecast these events, using the forecast ensembles to try to understand the reasons underlying the very different development and outcomes for these two years. We test three hypotheses. First we find that the continuation of neutral ENSO conditions in 2014 is associated with the maintenance of the observed cold southeast Pacific sea surface temperature anomaly; secondly that, in our forecasts at least, warm west equatorial Pacific sea surface temperature anomalies do not appear to hinder El Niño development; and finally that stronger westerly wind burst activity in 2015 compared to 2014 is a key difference between the two years. Interestingly, in these years at least, this interannual variability in wind burst activity is predictable. ECMWF System 4 tends to produce more westerly wind bursts than Met Office GloSea5 and this likely contributes to the larger SST anomalies predicted in this model in both years. More... »

PAGES

10733

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-29130-1

DOI

http://dx.doi.org/10.1038/s41598-018-29130-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105513202

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30013235


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ineson", 
        "givenName": "Sarah", 
        "id": "sg:person.013407740607.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013407740607.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium- Range Weather Forecasts, Reading, Berks, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balmaseda", 
        "givenName": "Magdalena A.", 
        "id": "sg:person.010507005427.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507005427.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Davey", 
        "givenName": "Michael K.", 
        "id": "sg:person.013115533335.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013115533335.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "European Centre for Medium- Range Weather Forecasts, Reading, Berks, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Decremer", 
        "givenName": "Damien", 
        "id": "sg:person.01340201215.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340201215.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dunstone", 
        "givenName": "Nick J.", 
        "id": "sg:person.010343624671.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343624671.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordon", 
        "givenName": "Margaret", 
        "id": "sg:person.012002766561.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012002766561.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "China Meteorological Administration", 
          "id": "https://www.grid.ac/institutes/grid.8658.3", 
          "name": [
            "Laboratory for Climate Studies & CMA-NJU Joint Laboratory for Climate Prediction Studies, National Climate Center, China Meteorological Administration, 100081, Beijing, China", 
            "Department of Atmospheric Science, School of Environmental Studies, China University of Geoscience, 430074, Wuhan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Hong-Li", 
        "id": "sg:person.016217336217.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016217336217.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Exeter", 
          "id": "https://www.grid.ac/institutes/grid.8391.3", 
          "name": [
            "Met Office Hadley Centre, Exeter, UK", 
            "College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scaife", 
        "givenName": "Adam A.", 
        "id": "sg:person.0763203455.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763203455.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "European Centre for Medium- Range Weather Forecasts, Reading, Berks, UK", 
            "National Centre for Atmospheric Science (NCAS), Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weisheimer", 
        "givenName": "Antje", 
        "id": "sg:person.012230143613.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230143613.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/2010mwr3615.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002589652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/sola.2016-004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004691129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-84-7-911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007994517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-13-00082.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009855346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011536449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsif.2013.1162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014506299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1132588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015053580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl070888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016295270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli3588.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019555360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jd002670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020320930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl069204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021198042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-12-00731.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022181598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022920192", 
          "https://doi.org/10.1038/ngeo2399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-014-2303-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023364455", 
          "https://doi.org/10.1007/s00382-014-2303-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2002jc001498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025679620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.2396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027539724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2014gl061186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028713020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli4138a.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028740084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/gmd-8-1509-2015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030136108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0385.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031352454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nclimate2775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032321406", 
          "https://doi.org/10.1038/nclimate2775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ngeo2824", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032702241", 
          "https://doi.org/10.1038/ngeo2824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1514182113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038214917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/qj.828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039601605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl030302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042468833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015gl064899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043031164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crm.2013.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043064909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015gl066173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044548690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-015-2528-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046566285", 
          "https://doi.org/10.1007/s00382-015-2528-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/bams-d-11-00111.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047895894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015gl064833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051444231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep19677", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052084531", 
          "https://doi.org/10.1038/srep19677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli4272.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053088341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli4953.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053573781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0493(1969)097<0163:atftep>2.3.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063452054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-15-0876.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063455260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3402/tellusa.v46i4.15484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071279713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016gl071515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083759982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3710-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085567856", 
          "https://doi.org/10.1007/s00382-017-3710-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3710-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085567856", 
          "https://doi.org/10.1007/s00382-017-3710-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-02926-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085793351", 
          "https://doi.org/10.1038/s41598-017-02926-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/jcli-d-16-0642.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1087306146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2017gl074244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091145587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3908-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091762927", 
          "https://doi.org/10.1007/s00382-017-3908-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-017-3938-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092101062", 
          "https://doi.org/10.1007/s00382-017-3938-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-20294-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100699186", 
          "https://doi.org/10.1038/s41598-018-20294-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Early in 2014 several forecast systems were suggesting a strong 1997/98-like El Ni\u00f1o event for the following northern hemisphere winter 2014/15. However the eventual outcome was a modest warming. In contrast, winter 2015/16 saw one of the strongest El Ni\u00f1o events on record. Here we assess the ability of two operational seasonal prediction systems to forecast these events, using the forecast ensembles to try to understand the reasons underlying the very different development and outcomes for these two years. We test three hypotheses. First we find that the continuation of neutral ENSO conditions in 2014 is associated with the maintenance of the observed cold southeast Pacific sea surface temperature anomaly; secondly that, in our forecasts at least, warm west equatorial Pacific sea surface temperature anomalies do not appear to hinder El Ni\u00f1o development; and finally that stronger westerly wind burst activity in 2015 compared to 2014 is a key difference between the two years. Interestingly, in these years at least, this interannual variability in wind burst activity is predictable. ECMWF System 4 tends to produce more westerly wind bursts than Met Office GloSea5 and this likely contributes to the larger SST anomalies predicted in this model in both years.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-29130-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Predicting El Ni\u00f1o in 2014 and 2015", 
    "pagination": "10733", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4798b405c8706d7ebad5cea2da7dd9c909d6e8400995c962c6bae7a222dcea8c"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30013235"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-29130-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105513202"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-29130-1", 
      "https://app.dimensions.ai/details/publication/pub.1105513202"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-29130-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29130-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29130-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29130-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29130-1'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-29130-1 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N27645e2ce7544ce986bbe1044a7336ce
4 schema:citation sg:pub.10.1007/s00382-014-2303-5
5 sg:pub.10.1007/s00382-015-2528-y
6 sg:pub.10.1007/s00382-017-3710-1
7 sg:pub.10.1007/s00382-017-3908-2
8 sg:pub.10.1007/s00382-017-3938-9
9 sg:pub.10.1038/nclimate2775
10 sg:pub.10.1038/ngeo2399
11 sg:pub.10.1038/ngeo2824
12 sg:pub.10.1038/s41598-017-02926-3
13 sg:pub.10.1038/s41598-018-20294-4
14 sg:pub.10.1038/srep19677
15 https://doi.org/10.1002/2014gl061186
16 https://doi.org/10.1002/2015gl064833
17 https://doi.org/10.1002/2015gl064899
18 https://doi.org/10.1002/2015gl066173
19 https://doi.org/10.1002/2016gl069204
20 https://doi.org/10.1002/2016gl070888
21 https://doi.org/10.1002/2016gl071515
22 https://doi.org/10.1002/2017gl074244
23 https://doi.org/10.1002/qj.2396
24 https://doi.org/10.1002/qj.2910
25 https://doi.org/10.1002/qj.828
26 https://doi.org/10.1016/j.crm.2013.12.002
27 https://doi.org/10.1029/2002jc001498
28 https://doi.org/10.1029/2002jd002670
29 https://doi.org/10.1029/2007gl030302
30 https://doi.org/10.1073/pnas.1514182113
31 https://doi.org/10.1098/rsif.2013.1162
32 https://doi.org/10.1126/science.1132588
33 https://doi.org/10.1175/1520-0493(1969)097<0163:atftep>2.3.co;2
34 https://doi.org/10.1175/2010mwr3615.1
35 https://doi.org/10.1175/bams-84-7-911
36 https://doi.org/10.1175/bams-d-11-00111.1
37 https://doi.org/10.1175/jcli-d-12-00731.1
38 https://doi.org/10.1175/jcli-d-13-00082.1
39 https://doi.org/10.1175/jcli-d-15-0876.1
40 https://doi.org/10.1175/jcli-d-16-0385.1
41 https://doi.org/10.1175/jcli-d-16-0642.1
42 https://doi.org/10.1175/jcli3588.1
43 https://doi.org/10.1175/jcli4138a.1
44 https://doi.org/10.1175/jcli4272.1
45 https://doi.org/10.1175/jcli4953.1
46 https://doi.org/10.2151/sola.2016-004
47 https://doi.org/10.3402/tellusa.v46i4.15484
48 https://doi.org/10.5194/gmd-8-1509-2015
49 schema:datePublished 2018-12
50 schema:datePublishedReg 2018-12-01
51 schema:description Early in 2014 several forecast systems were suggesting a strong 1997/98-like El Niño event for the following northern hemisphere winter 2014/15. However the eventual outcome was a modest warming. In contrast, winter 2015/16 saw one of the strongest El Niño events on record. Here we assess the ability of two operational seasonal prediction systems to forecast these events, using the forecast ensembles to try to understand the reasons underlying the very different development and outcomes for these two years. We test three hypotheses. First we find that the continuation of neutral ENSO conditions in 2014 is associated with the maintenance of the observed cold southeast Pacific sea surface temperature anomaly; secondly that, in our forecasts at least, warm west equatorial Pacific sea surface temperature anomalies do not appear to hinder El Niño development; and finally that stronger westerly wind burst activity in 2015 compared to 2014 is a key difference between the two years. Interestingly, in these years at least, this interannual variability in wind burst activity is predictable. ECMWF System 4 tends to produce more westerly wind bursts than Met Office GloSea5 and this likely contributes to the larger SST anomalies predicted in this model in both years.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree true
55 schema:isPartOf N9438ed7ff9ed4ab18c970dccf5d717ec
56 Nec0b18138d974961bc673b6c45e856c9
57 sg:journal.1045337
58 schema:name Predicting El Niño in 2014 and 2015
59 schema:pagination 10733
60 schema:productId N26d7b9292ba14e3e8e153111ac0143fc
61 N61b72190eccc4cd0b875c0cf432277b7
62 N83ed2e446af442f580d4691d5763226f
63 Nc6a608e885dc421fb92370c731c5ddd5
64 Nfe3372ae13c842a5a53772f2ae8b17d3
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105513202
66 https://doi.org/10.1038/s41598-018-29130-1
67 schema:sdDatePublished 2019-04-11T02:32
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher N723ef20262444b00999afc98740d2abe
70 schema:url https://www.nature.com/articles/s41598-018-29130-1
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N2321b01521434c97b057f0f7f99aab46 rdf:first sg:person.013115533335.47
75 rdf:rest Nba632d89fd704e02b8127abcef1f04ee
76 N26d7b9292ba14e3e8e153111ac0143fc schema:name readcube_id
77 schema:value 4798b405c8706d7ebad5cea2da7dd9c909d6e8400995c962c6bae7a222dcea8c
78 rdf:type schema:PropertyValue
79 N27645e2ce7544ce986bbe1044a7336ce rdf:first sg:person.013407740607.13
80 rdf:rest Ne5dec1590cd54869852a0d7a0151fbff
81 N61b72190eccc4cd0b875c0cf432277b7 schema:name dimensions_id
82 schema:value pub.1105513202
83 rdf:type schema:PropertyValue
84 N723ef20262444b00999afc98740d2abe schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N83ed2e446af442f580d4691d5763226f schema:name doi
87 schema:value 10.1038/s41598-018-29130-1
88 rdf:type schema:PropertyValue
89 N89a5e5dd49d4499bbf052e92c3a5b1a6 rdf:first sg:person.012230143613.29
90 rdf:rest rdf:nil
91 N9438ed7ff9ed4ab18c970dccf5d717ec schema:volumeNumber 8
92 rdf:type schema:PublicationVolume
93 N9929e7c0dae34d0bb3ade38ecebe9831 rdf:first sg:person.012002766561.92
94 rdf:rest Nb613a13dcdc94f0988b0fc6225345cbf
95 Na877ef97c8a048988acd926f5c6b43ee rdf:first sg:person.010343624671.32
96 rdf:rest N9929e7c0dae34d0bb3ade38ecebe9831
97 Nb613a13dcdc94f0988b0fc6225345cbf rdf:first sg:person.016217336217.10
98 rdf:rest Nd21f95c590a249b6a84bba8287fbd519
99 Nba632d89fd704e02b8127abcef1f04ee rdf:first sg:person.01340201215.37
100 rdf:rest Na877ef97c8a048988acd926f5c6b43ee
101 Nc6a608e885dc421fb92370c731c5ddd5 schema:name pubmed_id
102 schema:value 30013235
103 rdf:type schema:PropertyValue
104 Nd21f95c590a249b6a84bba8287fbd519 rdf:first sg:person.0763203455.88
105 rdf:rest N89a5e5dd49d4499bbf052e92c3a5b1a6
106 Ne5dec1590cd54869852a0d7a0151fbff rdf:first sg:person.010507005427.12
107 rdf:rest N2321b01521434c97b057f0f7f99aab46
108 Nec0b18138d974961bc673b6c45e856c9 schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 Nfe3372ae13c842a5a53772f2ae8b17d3 schema:name nlm_unique_id
111 schema:value 101563288
112 rdf:type schema:PropertyValue
113 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
114 schema:name Earth Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
117 schema:name Oceanography
118 rdf:type schema:DefinedTerm
119 sg:journal.1045337 schema:issn 2045-2322
120 schema:name Scientific Reports
121 rdf:type schema:Periodical
122 sg:person.010343624671.32 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
123 schema:familyName Dunstone
124 schema:givenName Nick J.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010343624671.32
126 rdf:type schema:Person
127 sg:person.010507005427.12 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
128 schema:familyName Balmaseda
129 schema:givenName Magdalena A.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010507005427.12
131 rdf:type schema:Person
132 sg:person.012002766561.92 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
133 schema:familyName Gordon
134 schema:givenName Margaret
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012002766561.92
136 rdf:type schema:Person
137 sg:person.012230143613.29 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
138 schema:familyName Weisheimer
139 schema:givenName Antje
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012230143613.29
141 rdf:type schema:Person
142 sg:person.013115533335.47 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
143 schema:familyName Davey
144 schema:givenName Michael K.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013115533335.47
146 rdf:type schema:Person
147 sg:person.01340201215.37 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
148 schema:familyName Decremer
149 schema:givenName Damien
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340201215.37
151 rdf:type schema:Person
152 sg:person.013407740607.13 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
153 schema:familyName Ineson
154 schema:givenName Sarah
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013407740607.13
156 rdf:type schema:Person
157 sg:person.016217336217.10 schema:affiliation https://www.grid.ac/institutes/grid.8658.3
158 schema:familyName Ren
159 schema:givenName Hong-Li
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016217336217.10
161 rdf:type schema:Person
162 sg:person.0763203455.88 schema:affiliation https://www.grid.ac/institutes/grid.8391.3
163 schema:familyName Scaife
164 schema:givenName Adam A.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763203455.88
166 rdf:type schema:Person
167 sg:pub.10.1007/s00382-014-2303-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023364455
168 https://doi.org/10.1007/s00382-014-2303-5
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s00382-015-2528-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046566285
171 https://doi.org/10.1007/s00382-015-2528-y
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s00382-017-3710-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085567856
174 https://doi.org/10.1007/s00382-017-3710-1
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s00382-017-3908-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091762927
177 https://doi.org/10.1007/s00382-017-3908-2
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s00382-017-3938-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092101062
180 https://doi.org/10.1007/s00382-017-3938-9
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nclimate2775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032321406
183 https://doi.org/10.1038/nclimate2775
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ngeo2399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022920192
186 https://doi.org/10.1038/ngeo2399
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/ngeo2824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032702241
189 https://doi.org/10.1038/ngeo2824
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/s41598-017-02926-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085793351
192 https://doi.org/10.1038/s41598-017-02926-3
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/s41598-018-20294-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100699186
195 https://doi.org/10.1038/s41598-018-20294-4
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/srep19677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052084531
198 https://doi.org/10.1038/srep19677
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1002/2014gl061186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028713020
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1002/2015gl064833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051444231
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1002/2015gl064899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043031164
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1002/2015gl066173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044548690
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1002/2016gl069204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021198042
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1002/2016gl070888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016295270
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1002/2016gl071515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083759982
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1002/2017gl074244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091145587
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1002/qj.2396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027539724
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1002/qj.2910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011536449
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1002/qj.828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039601605
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.crm.2013.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043064909
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1029/2002jc001498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025679620
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1029/2002jd002670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020320930
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1029/2007gl030302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042468833
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.1514182113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038214917
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1098/rsif.2013.1162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014506299
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1126/science.1132588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015053580
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1175/1520-0493(1969)097<0163:atftep>2.3.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063452054
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1175/2010mwr3615.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002589652
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1175/bams-84-7-911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007994517
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1175/bams-d-11-00111.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047895894
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1175/jcli-d-12-00731.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022181598
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1175/jcli-d-13-00082.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009855346
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1175/jcli-d-15-0876.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063455260
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1175/jcli-d-16-0385.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031352454
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1175/jcli-d-16-0642.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1087306146
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1175/jcli3588.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019555360
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1175/jcli4138a.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028740084
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1175/jcli4272.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053088341
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1175/jcli4953.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053573781
261 rdf:type schema:CreativeWork
262 https://doi.org/10.2151/sola.2016-004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004691129
263 rdf:type schema:CreativeWork
264 https://doi.org/10.3402/tellusa.v46i4.15484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071279713
265 rdf:type schema:CreativeWork
266 https://doi.org/10.5194/gmd-8-1509-2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030136108
267 rdf:type schema:CreativeWork
268 https://www.grid.ac/institutes/grid.17100.37 schema:alternateName Met Office
269 schema:name Met Office Hadley Centre, Exeter, UK
270 rdf:type schema:Organization
271 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
272 schema:name European Centre for Medium- Range Weather Forecasts, Reading, Berks, UK
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
275 schema:name European Centre for Medium- Range Weather Forecasts, Reading, Berks, UK
276 National Centre for Atmospheric Science (NCAS), Department of Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, UK
277 rdf:type schema:Organization
278 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
279 schema:name Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
280 rdf:type schema:Organization
281 https://www.grid.ac/institutes/grid.8391.3 schema:alternateName University of Exeter
282 schema:name College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
283 Met Office Hadley Centre, Exeter, UK
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.8658.3 schema:alternateName China Meteorological Administration
286 schema:name Department of Atmospheric Science, School of Environmental Studies, China University of Geoscience, 430074, Wuhan, China
287 Laboratory for Climate Studies & CMA-NJU Joint Laboratory for Climate Prediction Studies, National Climate Center, China Meteorological Administration, 100081, Beijing, China
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...