SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Hussam J Al-Barakati, Evan W McConnell, Leslie M Hicks, Leslie B Poole, Robert H Newman, Dukka B Kc

ABSTRACT

Protein S-sulfenylation, which results from oxidation of free thiols on cysteine residues, has recently emerged as an important post-translational modification that regulates the structure and function of proteins involved in a variety of physiological and pathological processes. By altering the size and physiochemical properties of modified cysteine residues, sulfenylation can impact the cellular function of proteins in several different ways. Thus, the ability to rapidly and accurately identify putative sulfenylation sites in proteins will provide important insights into redox-dependent regulation of protein function in a variety of cellular contexts. Though bottom-up proteomic approaches, such as tandem mass spectrometry (MS/MS), provide a wealth of information about global changes in the sulfenylation state of proteins, MS/MS-based experiments are often labor-intensive, costly and technically challenging. Therefore, to complement existing proteomic approaches, researchers have developed a series of computational tools to identify putative sulfenylation sites on proteins. However, existing methods often suffer from low accuracy, specificity, and/or sensitivity. In this study, we developed SVM-SulfoSite, a novel sulfenylation prediction tool that uses support vector machines (SVM) to identify key determinants of sulfenylation among five feature classes: binary code, physiochemical properties, k-space amino acid pairs, amino acid composition and high-quality physiochemical indices. Using 10-fold cross-validation, SVM-SulfoSite achieved 95% sensitivity and 83% specificity, with an overall accuracy of 89% and Matthew's correlation coefficient (MCC) of 0.79. Likewise, using an independent test set of experimentally identified sulfenylation sites, our method achieved scores of 74%, 62%, 80% and 0.42 for accuracy, sensitivity, specificity and MCC, with an area under the receiver operator characteristic (ROC) curve of 0.81. Moreover, in side-by-side comparisons, SVM-SulfoSite performed as well as or better than existing sulfenylation prediction tools. Together, these results suggest that our method represents a robust and complementary technique for advanced exploration of protein S-sulfenylation. More... »

PAGES

11288

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-29126-x

DOI

http://dx.doi.org/10.1038/s41598-018-29126-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105743472

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30050050


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North Carolina Agricultural and Technical State University", 
          "id": "https://www.grid.ac/institutes/grid.261037.1", 
          "name": [
            "Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Al-Barakati", 
        "givenName": "Hussam J", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "McConnell", 
        "givenName": "Evan W", 
        "id": "sg:person.014654054005.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014654054005.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Carolina at Chapel Hill", 
          "id": "https://www.grid.ac/institutes/grid.10698.36", 
          "name": [
            "Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hicks", 
        "givenName": "Leslie M", 
        "id": "sg:person.01324764452.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324764452.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wake Forest University", 
          "id": "https://www.grid.ac/institutes/grid.241167.7", 
          "name": [
            "Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poole", 
        "givenName": "Leslie B", 
        "id": "sg:person.0674421303.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674421303.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina Agricultural and Technical State University", 
          "id": "https://www.grid.ac/institutes/grid.261037.1", 
          "name": [
            "Department of Biology, North Carolina A&T State University, Greensboro, NC, 27411, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Newman", 
        "givenName": "Robert H", 
        "id": "sg:person.014066021757.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066021757.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina Agricultural and Technical State University", 
          "id": "https://www.grid.ac/institutes/grid.261037.1", 
          "name": [
            "Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA. dbkc@ncat.edu."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kc", 
        "givenName": "Dukka B", 
        "id": "sg:person.01075701113.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075701113.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/bioinformatics/btt072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000182401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0154237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001472527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002303074", 
          "https://doi.org/10.1038/ncomms5776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003114733", 
          "https://doi.org/10.1186/1471-2105-10-416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-10-416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003114733", 
          "https://doi.org/10.1186/1471-2105-10-416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0106691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004453066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.112.268680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005059513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.112.268680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005059513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08839510500313653", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006269461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2008.01.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008489894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4mb00646a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010614177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0014-5793(92)80506-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010673408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2014.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012513532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1961189.1961199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013637525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2005.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013701558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1011665108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016369392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2013/109549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017074060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12864-015-2299-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017170180", 
          "https://doi.org/10.1186/s12864-015-2299-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021088039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2011.04.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021403722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/3281590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021829077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep38318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022643558", 
          "https://doi.org/10.1038/srep38318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/10409239509083488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022792436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.2829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025474215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1996.0804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025769897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026662984", 
          "https://doi.org/10.1038/nature09472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026662984", 
          "https://doi.org/10.1038/nature09472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/282109a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030404694", 
          "https://doi.org/10.1038/282109a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-15-s9-s18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032328912", 
          "https://doi.org/10.1186/1471-2164-15-s9-s18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cc17868k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032497095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2015.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035900057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cbpa.2010.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039388140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-011-1106-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040232625", 
          "https://doi.org/10.1007/s00726-011-1106-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00726-011-1106-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040232625", 
          "https://doi.org/10.1007/s00726-011-1106-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0129635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043833156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6mb00179c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045465583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mas.21384", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047036585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0028221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047674973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6mb00314a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048022948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.2759", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050786812", 
          "https://doi.org/10.1038/nmeth.2759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4137/bbi.s26864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050928356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cbic.201300396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051248846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(19990101)34:1<49::aid-prot5>3.0.co;2-l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051254601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051917964", 
          "https://doi.org/10.1038/srep07331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bc400093x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055155047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00668a030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055184670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja1083909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055848633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja1083909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055848633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ars.2010.3551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059231383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btw301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059414770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/protein/2.3.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059980404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tkde.2008.239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061661916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8503008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062656374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.143.1.7063747", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082130998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1570178614666170421164731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085266682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0177678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085751356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7mb00491e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091829885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icnc.2008.871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093380205"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Protein S-sulfenylation, which results from oxidation of free thiols on cysteine residues, has recently emerged as an important post-translational modification that regulates the structure and function of proteins involved in a variety of physiological and pathological processes. By altering the size and physiochemical properties of modified cysteine residues, sulfenylation can impact the cellular function of proteins in several different ways. Thus, the ability to rapidly and accurately identify putative sulfenylation sites in proteins will provide important insights into redox-dependent regulation of protein function in a variety of cellular contexts. Though bottom-up\u00a0proteomic approaches, such as tandem mass spectrometry (MS/MS), provide a wealth of information about global changes in the sulfenylation state of proteins, MS/MS-based experiments are often labor-intensive, costly and technically challenging. Therefore, to complement existing proteomic approaches, researchers have developed a series of computational tools to identify putative sulfenylation sites on proteins. However, existing methods often suffer from low accuracy, specificity, and/or sensitivity. In this study, we developed SVM-SulfoSite, a novel sulfenylation prediction tool that uses support vector machines (SVM) to identify key determinants of sulfenylation among five feature classes: binary code, physiochemical properties, k-space amino acid pairs, amino acid composition and high-quality physiochemical indices. Using 10-fold cross-validation, SVM-SulfoSite achieved 95% sensitivity and 83% specificity, with an overall accuracy of 89% and Matthew's correlation coefficient (MCC) of 0.79. Likewise, using an independent test set of experimentally identified sulfenylation sites, our method achieved scores of 74%, 62%, 80% and 0.42 for accuracy, sensitivity, specificity and MCC, with an area under the receiver operator characteristic (ROC) curve of 0.81. Moreover, in side-by-side comparisons, SVM-SulfoSite performed as well as or better than existing sulfenylation prediction tools. Together, these results suggest that our method represents a robust and complementary technique for advanced exploration of protein S-sulfenylation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-29126-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5301094", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4055594", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6936870", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5543002", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3106938", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2631878", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites", 
    "pagination": "11288", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76cbdeb9d8e37f671ced87248f3c57a97d7408aef7393d21cd852633d26c2cb4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30050050"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-29126-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105743472"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-29126-x", 
      "https://app.dimensions.ai/details/publication/pub.1105743472"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-29126-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29126-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29126-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29126-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-29126-x'


 

This table displays all metadata directly associated to this object as RDF triples.

297 TRIPLES      21 PREDICATES      84 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-29126-x schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nc1e5b6aff90040b39ac926f47f0b08ff
4 schema:citation sg:pub.10.1007/s00726-011-1106-9
5 sg:pub.10.1038/282109a0
6 sg:pub.10.1038/nature09472
7 sg:pub.10.1038/ncomms5776
8 sg:pub.10.1038/nmeth.2759
9 sg:pub.10.1038/srep07331
10 sg:pub.10.1038/srep38318
11 sg:pub.10.1186/1471-2105-10-416
12 sg:pub.10.1186/1471-2164-15-s9-s18
13 sg:pub.10.1186/s12864-015-2299-1
14 https://doi.org/10.1002/(sici)1097-0134(19990101)34:1<49::aid-prot5>3.0.co;2-l
15 https://doi.org/10.1002/cbic.201300396
16 https://doi.org/10.1002/mas.21384
17 https://doi.org/10.1006/jmbi.1996.0804
18 https://doi.org/10.1006/jmbi.1999.2829
19 https://doi.org/10.1016/0014-5793(92)80506-c
20 https://doi.org/10.1016/j.cbpa.2008.01.021
21 https://doi.org/10.1016/j.cbpa.2010.11.012
22 https://doi.org/10.1016/j.freeradbiomed.2011.04.031
23 https://doi.org/10.1016/j.freeradbiomed.2014.11.013
24 https://doi.org/10.1016/j.freeradbiomed.2015.02.005
25 https://doi.org/10.1016/j.patrec.2005.10.010
26 https://doi.org/10.1021/bc400093x
27 https://doi.org/10.1021/bi00668a030
28 https://doi.org/10.1021/ja1083909
29 https://doi.org/10.1039/c2cc17868k
30 https://doi.org/10.1039/c4mb00646a
31 https://doi.org/10.1039/c6mb00179c
32 https://doi.org/10.1039/c6mb00314a
33 https://doi.org/10.1039/c7mb00491e
34 https://doi.org/10.1073/pnas.1011665108
35 https://doi.org/10.1080/08839510500313653
36 https://doi.org/10.1089/ars.2010.3551
37 https://doi.org/10.1093/bioinformatics/btt072
38 https://doi.org/10.1093/bioinformatics/btv439
39 https://doi.org/10.1093/bioinformatics/btv558
40 https://doi.org/10.1093/bioinformatics/btw301
41 https://doi.org/10.1093/nar/gkm998
42 https://doi.org/10.1093/protein/2.3.185
43 https://doi.org/10.1109/icnc.2008.871
44 https://doi.org/10.1109/tkde.2008.239
45 https://doi.org/10.1126/science.8503008
46 https://doi.org/10.1145/1961189.1961199
47 https://doi.org/10.1148/radiology.143.1.7063747
48 https://doi.org/10.1155/2013/109549
49 https://doi.org/10.1155/2016/3281590
50 https://doi.org/10.1161/circresaha.112.268680
51 https://doi.org/10.1371/journal.pone.0028221
52 https://doi.org/10.1371/journal.pone.0106691
53 https://doi.org/10.1371/journal.pone.0129635
54 https://doi.org/10.1371/journal.pone.0154237
55 https://doi.org/10.1371/journal.pone.0177678
56 https://doi.org/10.2174/1570178614666170421164731
57 https://doi.org/10.3109/10409239509083488
58 https://doi.org/10.4137/bbi.s26864
59 schema:datePublished 2018-12
60 schema:datePublishedReg 2018-12-01
61 schema:description Protein S-sulfenylation, which results from oxidation of free thiols on cysteine residues, has recently emerged as an important post-translational modification that regulates the structure and function of proteins involved in a variety of physiological and pathological processes. By altering the size and physiochemical properties of modified cysteine residues, sulfenylation can impact the cellular function of proteins in several different ways. Thus, the ability to rapidly and accurately identify putative sulfenylation sites in proteins will provide important insights into redox-dependent regulation of protein function in a variety of cellular contexts. Though bottom-up proteomic approaches, such as tandem mass spectrometry (MS/MS), provide a wealth of information about global changes in the sulfenylation state of proteins, MS/MS-based experiments are often labor-intensive, costly and technically challenging. Therefore, to complement existing proteomic approaches, researchers have developed a series of computational tools to identify putative sulfenylation sites on proteins. However, existing methods often suffer from low accuracy, specificity, and/or sensitivity. In this study, we developed SVM-SulfoSite, a novel sulfenylation prediction tool that uses support vector machines (SVM) to identify key determinants of sulfenylation among five feature classes: binary code, physiochemical properties, k-space amino acid pairs, amino acid composition and high-quality physiochemical indices. Using 10-fold cross-validation, SVM-SulfoSite achieved 95% sensitivity and 83% specificity, with an overall accuracy of 89% and Matthew's correlation coefficient (MCC) of 0.79. Likewise, using an independent test set of experimentally identified sulfenylation sites, our method achieved scores of 74%, 62%, 80% and 0.42 for accuracy, sensitivity, specificity and MCC, with an area under the receiver operator characteristic (ROC) curve of 0.81. Moreover, in side-by-side comparisons, SVM-SulfoSite performed as well as or better than existing sulfenylation prediction tools. Together, these results suggest that our method represents a robust and complementary technique for advanced exploration of protein S-sulfenylation.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree true
65 schema:isPartOf Nbe0c138f181d49bc925b46608698ece2
66 Neaab880ee854472594cffe05a6d99b70
67 sg:journal.1045337
68 schema:name SVM-SulfoSite: A support vector machine based predictor for sulfenylation sites
69 schema:pagination 11288
70 schema:productId N27f5973de516478ab4af6f13698bea1e
71 N2bc813506dc64c1fa0c64edc0155f0d5
72 N4ea1b684b8cb4cb5a527deb5b195e10a
73 N61ed1433c4a648a58def65b4af6c08de
74 Nce003aa92bd54f918b1cf6acb2cee0d0
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105743472
76 https://doi.org/10.1038/s41598-018-29126-x
77 schema:sdDatePublished 2019-04-10T13:27
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nfe3b956e94ec4508ab0f34bc2a75f383
80 schema:url https://www.nature.com/articles/s41598-018-29126-x
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N11d79f3c5a9f449d8a097d076a18b5f7 rdf:first sg:person.0674421303.27
85 rdf:rest N6182abee38d846eca6c798fb98b4a329
86 N27f5973de516478ab4af6f13698bea1e schema:name readcube_id
87 schema:value 76cbdeb9d8e37f671ced87248f3c57a97d7408aef7393d21cd852633d26c2cb4
88 rdf:type schema:PropertyValue
89 N2bc813506dc64c1fa0c64edc0155f0d5 schema:name doi
90 schema:value 10.1038/s41598-018-29126-x
91 rdf:type schema:PropertyValue
92 N4ea1b684b8cb4cb5a527deb5b195e10a schema:name dimensions_id
93 schema:value pub.1105743472
94 rdf:type schema:PropertyValue
95 N6182abee38d846eca6c798fb98b4a329 rdf:first sg:person.014066021757.45
96 rdf:rest N8be20766002b44baae48e9c06c2a4389
97 N61ed1433c4a648a58def65b4af6c08de schema:name pubmed_id
98 schema:value 30050050
99 rdf:type schema:PropertyValue
100 N6d399a9e8012410d9e9aba405d3f4701 rdf:first sg:person.014654054005.22
101 rdf:rest Nea53ce3efce04c0686d34c4b3ad69406
102 N8be20766002b44baae48e9c06c2a4389 rdf:first sg:person.01075701113.54
103 rdf:rest rdf:nil
104 Nbe0c138f181d49bc925b46608698ece2 schema:issueNumber 1
105 rdf:type schema:PublicationIssue
106 Nc1e5b6aff90040b39ac926f47f0b08ff rdf:first Nf87cf7422ebc4fffba3ff6ded22be39d
107 rdf:rest N6d399a9e8012410d9e9aba405d3f4701
108 Nce003aa92bd54f918b1cf6acb2cee0d0 schema:name nlm_unique_id
109 schema:value 101563288
110 rdf:type schema:PropertyValue
111 Nea53ce3efce04c0686d34c4b3ad69406 rdf:first sg:person.01324764452.28
112 rdf:rest N11d79f3c5a9f449d8a097d076a18b5f7
113 Neaab880ee854472594cffe05a6d99b70 schema:volumeNumber 8
114 rdf:type schema:PublicationVolume
115 Nf87cf7422ebc4fffba3ff6ded22be39d schema:affiliation https://www.grid.ac/institutes/grid.261037.1
116 schema:familyName Al-Barakati
117 schema:givenName Hussam J
118 rdf:type schema:Person
119 Nfe3b956e94ec4508ab0f34bc2a75f383 schema:name Springer Nature - SN SciGraph project
120 rdf:type schema:Organization
121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
122 schema:name Biological Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biochemistry and Cell Biology
126 rdf:type schema:DefinedTerm
127 sg:grant.2631878 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-29126-x
128 rdf:type schema:MonetaryGrant
129 sg:grant.3106938 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-29126-x
130 rdf:type schema:MonetaryGrant
131 sg:grant.4055594 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-29126-x
132 rdf:type schema:MonetaryGrant
133 sg:grant.5301094 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-29126-x
134 rdf:type schema:MonetaryGrant
135 sg:grant.5543002 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-29126-x
136 rdf:type schema:MonetaryGrant
137 sg:grant.6936870 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-29126-x
138 rdf:type schema:MonetaryGrant
139 sg:journal.1045337 schema:issn 2045-2322
140 schema:name Scientific Reports
141 rdf:type schema:Periodical
142 sg:person.01075701113.54 schema:affiliation https://www.grid.ac/institutes/grid.261037.1
143 schema:familyName Kc
144 schema:givenName Dukka B
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075701113.54
146 rdf:type schema:Person
147 sg:person.01324764452.28 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
148 schema:familyName Hicks
149 schema:givenName Leslie M
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324764452.28
151 rdf:type schema:Person
152 sg:person.014066021757.45 schema:affiliation https://www.grid.ac/institutes/grid.261037.1
153 schema:familyName Newman
154 schema:givenName Robert H
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014066021757.45
156 rdf:type schema:Person
157 sg:person.014654054005.22 schema:affiliation https://www.grid.ac/institutes/grid.10698.36
158 schema:familyName McConnell
159 schema:givenName Evan W
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014654054005.22
161 rdf:type schema:Person
162 sg:person.0674421303.27 schema:affiliation https://www.grid.ac/institutes/grid.241167.7
163 schema:familyName Poole
164 schema:givenName Leslie B
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0674421303.27
166 rdf:type schema:Person
167 sg:pub.10.1007/s00726-011-1106-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040232625
168 https://doi.org/10.1007/s00726-011-1106-9
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/282109a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030404694
171 https://doi.org/10.1038/282109a0
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature09472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026662984
174 https://doi.org/10.1038/nature09472
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/ncomms5776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002303074
177 https://doi.org/10.1038/ncomms5776
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nmeth.2759 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050786812
180 https://doi.org/10.1038/nmeth.2759
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/srep07331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051917964
183 https://doi.org/10.1038/srep07331
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/srep38318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022643558
186 https://doi.org/10.1038/srep38318
187 rdf:type schema:CreativeWork
188 sg:pub.10.1186/1471-2105-10-416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003114733
189 https://doi.org/10.1186/1471-2105-10-416
190 rdf:type schema:CreativeWork
191 sg:pub.10.1186/1471-2164-15-s9-s18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032328912
192 https://doi.org/10.1186/1471-2164-15-s9-s18
193 rdf:type schema:CreativeWork
194 sg:pub.10.1186/s12864-015-2299-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017170180
195 https://doi.org/10.1186/s12864-015-2299-1
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/(sici)1097-0134(19990101)34:1<49::aid-prot5>3.0.co;2-l schema:sameAs https://app.dimensions.ai/details/publication/pub.1051254601
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/cbic.201300396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051248846
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/mas.21384 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047036585
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1006/jmbi.1996.0804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025769897
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1006/jmbi.1999.2829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025474215
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/0014-5793(92)80506-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1010673408
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.cbpa.2008.01.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008489894
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.cbpa.2010.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039388140
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.freeradbiomed.2011.04.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021403722
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.freeradbiomed.2014.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012513532
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/j.freeradbiomed.2015.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035900057
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/j.patrec.2005.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013701558
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1021/bc400093x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055155047
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/bi00668a030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055184670
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1021/ja1083909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055848633
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1039/c2cc17868k schema:sameAs https://app.dimensions.ai/details/publication/pub.1032497095
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1039/c4mb00646a schema:sameAs https://app.dimensions.ai/details/publication/pub.1010614177
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1039/c6mb00179c schema:sameAs https://app.dimensions.ai/details/publication/pub.1045465583
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1039/c6mb00314a schema:sameAs https://app.dimensions.ai/details/publication/pub.1048022948
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1039/c7mb00491e schema:sameAs https://app.dimensions.ai/details/publication/pub.1091829885
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1073/pnas.1011665108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016369392
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1080/08839510500313653 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006269461
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1089/ars.2010.3551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059231383
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/bioinformatics/btt072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000182401
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/bioinformatics/btv439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414435
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/bioinformatics/btv558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414499
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/bioinformatics/btw301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059414770
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1093/nar/gkm998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021088039
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1093/protein/2.3.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059980404
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1109/icnc.2008.871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093380205
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1109/tkde.2008.239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061661916
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1126/science.8503008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062656374
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1145/1961189.1961199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013637525
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1148/radiology.143.1.7063747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082130998
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1155/2013/109549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017074060
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1155/2016/3281590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021829077
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1161/circresaha.112.268680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005059513
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1371/journal.pone.0028221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047674973
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1371/journal.pone.0106691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004453066
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1371/journal.pone.0129635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043833156
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1371/journal.pone.0154237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001472527
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1371/journal.pone.0177678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085751356
280 rdf:type schema:CreativeWork
281 https://doi.org/10.2174/1570178614666170421164731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085266682
282 rdf:type schema:CreativeWork
283 https://doi.org/10.3109/10409239509083488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792436
284 rdf:type schema:CreativeWork
285 https://doi.org/10.4137/bbi.s26864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050928356
286 rdf:type schema:CreativeWork
287 https://www.grid.ac/institutes/grid.10698.36 schema:alternateName University of North Carolina at Chapel Hill
288 schema:name Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
289 rdf:type schema:Organization
290 https://www.grid.ac/institutes/grid.241167.7 schema:alternateName Wake Forest University
291 schema:name Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
292 rdf:type schema:Organization
293 https://www.grid.ac/institutes/grid.261037.1 schema:alternateName North Carolina Agricultural and Technical State University
294 schema:name Department of Biology, North Carolina A&T State University, Greensboro, NC, 27411, USA.
295 Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA.
296 Department of Computational Science and Engineering, North Carolina A&T State University, Greensboro, NC, 27411, USA. dbkc@ncat.edu.
297 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...