Stochastic sequestration dynamics: a minimal model with extrinsic noise for bimodal distributions and competitors correlation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Marco Del Giudice, Carla Bosia, Silvia Grigolon, Stefano Bo

ABSTRACT

Many biological processes are known to be based on molecular sequestration. This kind of dynamics involves two types of molecular species, namely targets and sequestrants, that bind to form a complex. In the simple framework of mass-action law, key features of these systems appear to be threshold-like profiles of the amounts of free molecules as a function of the parameters determining their possible maximum abundance. However, biochemical processes are probabilistic and take place in stochastically fluctuating environments. How these different sources of noise affect the final outcome of the network is not completely characterised yet. In this paper we specifically investigate the effects induced by a source of extrinsic noise onto a minimal stochastic model of molecular sequestration. We analytically show how bimodal distributions of the targets can appear and characterise them as a result of noise filtering mediated by the threshold response. We then address the correlations between target species induced by the sequestrant and discuss how extrinsic noise can turn the negative correlation caused by competition into a positive one. Finally, we consider the more complex scenario of competitive inhibition for enzymatic kinetics and discuss the relevance of our findings with respect to applications. More... »

PAGES

10387

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-28647-9

DOI

http://dx.doi.org/10.1038/s41598-018-28647-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105359816

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29991682


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Department of Applied Science and Technology, Politecnico di Torino corso Duca degli Abruzzi 24, IT-10129, Turin, Italy", 
            "Italian Institute for Genomic Medicine, via Nizza 52, I-10126, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Del Giudice", 
        "givenName": "Marco", 
        "id": "sg:person.011465510045.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465510045.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Applied Science and Technology, Politecnico di Torino corso Duca degli Abruzzi 24, IT-10129, Turin, Italy", 
            "Italian Institute for Genomic Medicine, via Nizza 52, I-10126, Torino, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bosia", 
        "givenName": "Carla", 
        "id": "sg:person.01250625530.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250625530.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Francis Crick Institute", 
          "id": "https://www.grid.ac/institutes/grid.451388.3", 
          "name": [
            "The Francis Crick Institute, 1, Midland Road, NW1 1AT, London, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grigolon", 
        "givenName": "Silvia", 
        "id": "sg:person.07361443321.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07361443321.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stockholm University", 
          "id": "https://www.grid.ac/institutes/grid.10548.38", 
          "name": [
            "Nordita, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91, Stockholm, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bo", 
        "givenName": "Stefano", 
        "id": "sg:person.01140154114.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140154114.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng.905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000209603", 
          "https://doi.org/10.1038/ng.905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkw550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001734657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1216379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002476237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/77/2/026601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003582873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s002190020002547x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005415153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0066609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017170988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1400049111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018658495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.162041399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021266377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2008.09.079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021552649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1070919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021654569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026904298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.83.010101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026904298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027789830", 
          "https://doi.org/10.1038/nature02840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02840", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027789830", 
          "https://doi.org/10.1038/nature02840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbamcr.2004.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029916113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2013.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030444471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(92)90283-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(92)90283-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030775693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1004333107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031724214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0600828103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032815423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035006736", 
          "https://doi.org/10.1038/nature12172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-11-s1-s8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038610454", 
          "https://doi.org/10.1186/1471-2164-11-s1-s8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1222509110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044271395"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(90)90214-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046578655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cytogfr.2005.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047820340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cytogfr.2005.02.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047820340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500003449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054010753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0033583500003449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054010753"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3452897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062129885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1972842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062243952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077452470", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-017-1162-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083851352", 
          "https://doi.org/10.1186/s13059-017-1162-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13059-017-1162-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083851352", 
          "https://doi.org/10.1186/s13059-017-1162-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep43673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131580", 
          "https://doi.org/10.1038/srep43673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2017.05.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090604111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1006063", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103403943"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Many biological processes are known to be based on molecular sequestration. This kind of dynamics involves two types of molecular species, namely targets and sequestrants, that bind to form a complex. In the simple framework of mass-action law, key features of these systems appear to be threshold-like profiles of the amounts of free molecules as a function of the parameters determining their possible maximum abundance. However, biochemical processes are probabilistic and take place in stochastically fluctuating environments. How these different sources of noise affect the final outcome of the network is not completely characterised yet. In this paper we specifically investigate the effects induced by a source of extrinsic noise onto a minimal stochastic model of molecular sequestration. We analytically show how bimodal distributions of the targets can appear and characterise them as a result of noise filtering mediated by the threshold response. We then address the correlations between target species induced by the sequestrant and discuss how extrinsic noise can turn the negative correlation caused by competition into a positive one. Finally, we consider the more complex scenario of competitive inhibition for enzymatic kinetics and discuss the relevance of our findings with respect to applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-28647-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6798244", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Stochastic sequestration dynamics: a minimal model with extrinsic noise for bimodal distributions and competitors correlation", 
    "pagination": "10387", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2c03e1a463e28b081acab3b2a27dd2b3cc7f63b100108ba2c986ea552b2e7830"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29991682"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-28647-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105359816"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-28647-9", 
      "https://app.dimensions.ai/details/publication/pub.1105359816"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-28647-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-28647-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-28647-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-28647-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-28647-9'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      60 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-28647-9 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N9ba7b8adbb514ac391a821c6f5ffb67d
4 schema:citation sg:pub.10.1038/nature02840
5 sg:pub.10.1038/nature12172
6 sg:pub.10.1038/ng.905
7 sg:pub.10.1038/srep43673
8 sg:pub.10.1186/1471-2164-11-s1-s8
9 sg:pub.10.1186/s13059-017-1162-x
10 https://app.dimensions.ai/details/publication/pub.1077452470
11 https://doi.org/10.1002/0471200611
12 https://doi.org/10.1016/0092-8674(90)90214-y
13 https://doi.org/10.1016/0378-4371(92)90283-v
14 https://doi.org/10.1016/j.bbamcr.2004.09.019
15 https://doi.org/10.1016/j.bpj.2013.01.012
16 https://doi.org/10.1016/j.bpj.2017.05.042
17 https://doi.org/10.1016/j.cytogfr.2005.02.007
18 https://doi.org/10.1016/j.jmb.2008.09.079
19 https://doi.org/10.1017/s002190020002547x
20 https://doi.org/10.1017/s0033583500003449
21 https://doi.org/10.1073/pnas.0600828103
22 https://doi.org/10.1073/pnas.1004333107
23 https://doi.org/10.1073/pnas.1222509110
24 https://doi.org/10.1073/pnas.1400049111
25 https://doi.org/10.1073/pnas.162041399
26 https://doi.org/10.1088/0034-4885/77/2/026601
27 https://doi.org/10.1093/nar/gkw550
28 https://doi.org/10.1103/physreve.83.010101
29 https://doi.org/10.1115/1.3452897
30 https://doi.org/10.1119/1.1972842
31 https://doi.org/10.1126/science.1070919
32 https://doi.org/10.1126/science.1216379
33 https://doi.org/10.1371/journal.pcbi.1006063
34 https://doi.org/10.1371/journal.pone.0066609
35 schema:datePublished 2018-12
36 schema:datePublishedReg 2018-12-01
37 schema:description Many biological processes are known to be based on molecular sequestration. This kind of dynamics involves two types of molecular species, namely targets and sequestrants, that bind to form a complex. In the simple framework of mass-action law, key features of these systems appear to be threshold-like profiles of the amounts of free molecules as a function of the parameters determining their possible maximum abundance. However, biochemical processes are probabilistic and take place in stochastically fluctuating environments. How these different sources of noise affect the final outcome of the network is not completely characterised yet. In this paper we specifically investigate the effects induced by a source of extrinsic noise onto a minimal stochastic model of molecular sequestration. We analytically show how bimodal distributions of the targets can appear and characterise them as a result of noise filtering mediated by the threshold response. We then address the correlations between target species induced by the sequestrant and discuss how extrinsic noise can turn the negative correlation caused by competition into a positive one. Finally, we consider the more complex scenario of competitive inhibition for enzymatic kinetics and discuss the relevance of our findings with respect to applications.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N00005138134a4e03851ddac461e7ec9e
42 Nfef339ddb8b04971b5820a0a1816660b
43 sg:journal.1045337
44 schema:name Stochastic sequestration dynamics: a minimal model with extrinsic noise for bimodal distributions and competitors correlation
45 schema:pagination 10387
46 schema:productId N509309f29b6544c2b3c6467188d2fe5c
47 N720b79bc4b7549a7be67967e04a7029c
48 N7d769c3f868246e7885dec9fdb4f260f
49 Nb0643f5f9a794bc0bd1a6daa9a5cab02
50 Ne71ee468cf184a4ea6b33e6c1a05d771
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105359816
52 https://doi.org/10.1038/s41598-018-28647-9
53 schema:sdDatePublished 2019-04-10T14:19
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N9d730b2115ad48d6b1a81f32568b5278
56 schema:url https://www.nature.com/articles/s41598-018-28647-9
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N00005138134a4e03851ddac461e7ec9e schema:issueNumber 1
61 rdf:type schema:PublicationIssue
62 N241b6140e2c44156b428cfd5b80ad448 schema:name Department of Applied Science and Technology, Politecnico di Torino corso Duca degli Abruzzi 24, IT-10129, Turin, Italy
63 Italian Institute for Genomic Medicine, via Nizza 52, I-10126, Torino, Italy
64 rdf:type schema:Organization
65 N509309f29b6544c2b3c6467188d2fe5c schema:name doi
66 schema:value 10.1038/s41598-018-28647-9
67 rdf:type schema:PropertyValue
68 N720b79bc4b7549a7be67967e04a7029c schema:name readcube_id
69 schema:value 2c03e1a463e28b081acab3b2a27dd2b3cc7f63b100108ba2c986ea552b2e7830
70 rdf:type schema:PropertyValue
71 N7d769c3f868246e7885dec9fdb4f260f schema:name pubmed_id
72 schema:value 29991682
73 rdf:type schema:PropertyValue
74 N834855f678e942c3b09e195c98a9b169 schema:name Department of Applied Science and Technology, Politecnico di Torino corso Duca degli Abruzzi 24, IT-10129, Turin, Italy
75 Italian Institute for Genomic Medicine, via Nizza 52, I-10126, Torino, Italy
76 rdf:type schema:Organization
77 N8c256684d0cc46929c9377008a078312 rdf:first sg:person.01140154114.16
78 rdf:rest rdf:nil
79 N8e83b3dcdb4741ca964049dc75d8dc25 rdf:first sg:person.01250625530.63
80 rdf:rest Nf2576eb57b4f493a99f3935b45ffea02
81 N9ba7b8adbb514ac391a821c6f5ffb67d rdf:first sg:person.011465510045.34
82 rdf:rest N8e83b3dcdb4741ca964049dc75d8dc25
83 N9d730b2115ad48d6b1a81f32568b5278 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nb0643f5f9a794bc0bd1a6daa9a5cab02 schema:name nlm_unique_id
86 schema:value 101563288
87 rdf:type schema:PropertyValue
88 Ne71ee468cf184a4ea6b33e6c1a05d771 schema:name dimensions_id
89 schema:value pub.1105359816
90 rdf:type schema:PropertyValue
91 Nf2576eb57b4f493a99f3935b45ffea02 rdf:first sg:person.07361443321.23
92 rdf:rest N8c256684d0cc46929c9377008a078312
93 Nfef339ddb8b04971b5820a0a1816660b schema:volumeNumber 8
94 rdf:type schema:PublicationVolume
95 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
96 schema:name Biological Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biochemistry and Cell Biology
100 rdf:type schema:DefinedTerm
101 sg:grant.6798244 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-28647-9
102 rdf:type schema:MonetaryGrant
103 sg:journal.1045337 schema:issn 2045-2322
104 schema:name Scientific Reports
105 rdf:type schema:Periodical
106 sg:person.01140154114.16 schema:affiliation https://www.grid.ac/institutes/grid.10548.38
107 schema:familyName Bo
108 schema:givenName Stefano
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140154114.16
110 rdf:type schema:Person
111 sg:person.011465510045.34 schema:affiliation N834855f678e942c3b09e195c98a9b169
112 schema:familyName Del Giudice
113 schema:givenName Marco
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011465510045.34
115 rdf:type schema:Person
116 sg:person.01250625530.63 schema:affiliation N241b6140e2c44156b428cfd5b80ad448
117 schema:familyName Bosia
118 schema:givenName Carla
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250625530.63
120 rdf:type schema:Person
121 sg:person.07361443321.23 schema:affiliation https://www.grid.ac/institutes/grid.451388.3
122 schema:familyName Grigolon
123 schema:givenName Silvia
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07361443321.23
125 rdf:type schema:Person
126 sg:pub.10.1038/nature02840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027789830
127 https://doi.org/10.1038/nature02840
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nature12172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035006736
130 https://doi.org/10.1038/nature12172
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/ng.905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000209603
133 https://doi.org/10.1038/ng.905
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/srep43673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131580
136 https://doi.org/10.1038/srep43673
137 rdf:type schema:CreativeWork
138 sg:pub.10.1186/1471-2164-11-s1-s8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038610454
139 https://doi.org/10.1186/1471-2164-11-s1-s8
140 rdf:type schema:CreativeWork
141 sg:pub.10.1186/s13059-017-1162-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1083851352
142 https://doi.org/10.1186/s13059-017-1162-x
143 rdf:type schema:CreativeWork
144 https://app.dimensions.ai/details/publication/pub.1077452470 schema:CreativeWork
145 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/0092-8674(90)90214-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1046578655
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/0378-4371(92)90283-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1030775693
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.bbamcr.2004.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029916113
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.bpj.2013.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030444471
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.bpj.2017.05.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090604111
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.cytogfr.2005.02.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047820340
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.jmb.2008.09.079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021552649
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1017/s002190020002547x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005415153
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1017/s0033583500003449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054010753
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1073/pnas.0600828103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032815423
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1073/pnas.1004333107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031724214
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1073/pnas.1222509110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044271395
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.1400049111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018658495
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.162041399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021266377
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1088/0034-4885/77/2/026601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003582873
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1093/nar/gkw550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001734657
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physreve.83.010101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026904298
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1115/1.3452897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062129885
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1119/1.1972842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062243952
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.1070919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021654569
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.1216379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002476237
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1371/journal.pcbi.1006063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103403943
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1371/journal.pone.0066609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017170988
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.10548.38 schema:alternateName Stockholm University
194 schema:name Nordita, Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91, Stockholm, Sweden
195 rdf:type schema:Organization
196 https://www.grid.ac/institutes/grid.451388.3 schema:alternateName The Francis Crick Institute
197 schema:name The Francis Crick Institute, 1, Midland Road, NW1 1AT, London, United Kingdom
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...