Semi-metals as potential thermoelectric materials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-29

AUTHORS

Maxime Markov, Xixiao Hu, Han-Chun Liu, Naiming Liu, S. Joseph Poon, Keivan Esfarjani, Mona Zebarjadi

ABSTRACT

The best thermoelectric materials are believed to be heavily doped semiconductors. The presence of a band gap is assumed to be essential to achieve large thermoelectric power factor and figure of merit. In this work, we propose semi-metals with large asymmetry between conduction and valence bands as an alternative class of thermoelectric materials. To illustrate the idea, we study semi-metallic HgTe in details experimentally and theoretically. We employ ab initio calculations with hybrid exchange-correlation functional to accurately describe the electronic band structure in conjunction with the Boltzmann Transport theory to investigate the electronic transport properties. We calculate the lattice thermal conductivity using first principles calculations and evaluate the overall figure of merit. To validate our theoretical approach, we prepare semi-metallic HgTe samples and characterize their transport properties. Our first-principles calculations agree well with the experimental data. We show that intrinsic HgTe, a semimetal with large disparity in its electron and hole masses, has a high thermoelectric power factor that is comparable to the best known thermoelectric materials. Finally, we propose other possible materials with similar band structures as potential candidates for thermoelectric applications. More... »

PAGES

9876

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-28043-3

DOI

http://dx.doi.org/10.1038/s41598-018-28043-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105107357

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29959341


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Markov", 
        "givenName": "Maxime", 
        "id": "sg:person.010565540660.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010565540660.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Xixiao", 
        "id": "sg:person.011363121260.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363121260.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Han-Chun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Naiming", 
        "id": "sg:person.016146415042.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016146415042.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poon", 
        "givenName": "S. Joseph", 
        "id": "sg:person.010252015157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical and Aerospace Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA", 
            "Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
            "Department of Mechanical and Aerospace Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Esfarjani", 
        "givenName": "Keivan", 
        "id": "sg:person.01151423462.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151423462.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA", 
            "Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zebarjadi", 
        "givenName": "Mona", 
        "id": "sg:person.01263466775.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263466775.22"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat4461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024513144", 
          "https://doi.org/10.1038/nmat4461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001999839", 
          "https://doi.org/10.1038/srep27294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004886457", 
          "https://doi.org/10.1038/ncomms4786"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-29", 
    "datePublishedReg": "2018-06-29", 
    "description": "The best thermoelectric materials are believed to be heavily doped semiconductors. The presence of a band gap is assumed to be essential to achieve large thermoelectric power factor and figure of merit. In this work, we propose semi-metals with large asymmetry between conduction and valence bands as an alternative class of thermoelectric materials. To illustrate the idea, we study semi-metallic HgTe in details experimentally and theoretically. We employ ab initio calculations with hybrid exchange-correlation functional to accurately describe the electronic band structure in conjunction with the Boltzmann Transport theory to investigate the electronic transport properties. We calculate the lattice thermal conductivity using first principles calculations and evaluate the overall figure of merit. To validate our theoretical approach, we prepare semi-metallic HgTe samples and characterize their transport properties. Our first-principles calculations agree well with the experimental data. We show that intrinsic HgTe, a semimetal with large disparity in its electron and hole masses, has a high thermoelectric power factor that is comparable to the best known thermoelectric materials. Finally, we propose other possible materials with similar band structures as potential candidates for thermoelectric applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-28043-3", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "thermoelectric materials", 
      "thermoelectric power factor", 
      "first-principles calculations", 
      "power factor", 
      "Boltzmann transport theory", 
      "band structure", 
      "large thermoelectric power factor", 
      "high thermoelectric power factor", 
      "transport theory", 
      "transport properties", 
      "similar band structures", 
      "electronic band structure", 
      "potential thermoelectric materials", 
      "good thermoelectric material", 
      "lattice thermal conductivity", 
      "hole mass", 
      "figure of merit", 
      "electronic transport properties", 
      "thermal conductivity", 
      "thermoelectric applications", 
      "principles calculations", 
      "possible materials", 
      "alternative class", 
      "theoretical approach", 
      "experimental data", 
      "band gap", 
      "calculations", 
      "materials", 
      "valence band", 
      "ab initio calculations", 
      "large asymmetry", 
      "HgTe", 
      "semimetals", 
      "potential candidate", 
      "semiconductors", 
      "theory", 
      "properties", 
      "conductivity", 
      "merits", 
      "initio calculations", 
      "electrons", 
      "class", 
      "conduction", 
      "structure", 
      "overall figure", 
      "applications", 
      "approach", 
      "detail", 
      "idea", 
      "figures", 
      "work", 
      "band", 
      "gap", 
      "conjunction", 
      "asymmetry", 
      "candidates", 
      "large disparity", 
      "mass", 
      "data", 
      "samples", 
      "factors", 
      "presence", 
      "disparities"
    ], 
    "name": "Semi-metals as potential thermoelectric materials", 
    "pagination": "9876", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105107357"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-28043-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29959341"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-28043-3", 
      "https://app.dimensions.ai/details/publication/pub.1105107357"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_773.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-28043-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-28043-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-28043-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-28043-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-28043-3'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      91 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-28043-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1abb5c1181ac40d2a234a85419baba39
4 schema:citation sg:pub.10.1038/ncomms4786
5 sg:pub.10.1038/nmat4461
6 sg:pub.10.1038/srep27294
7 schema:datePublished 2018-06-29
8 schema:datePublishedReg 2018-06-29
9 schema:description The best thermoelectric materials are believed to be heavily doped semiconductors. The presence of a band gap is assumed to be essential to achieve large thermoelectric power factor and figure of merit. In this work, we propose semi-metals with large asymmetry between conduction and valence bands as an alternative class of thermoelectric materials. To illustrate the idea, we study semi-metallic HgTe in details experimentally and theoretically. We employ ab initio calculations with hybrid exchange-correlation functional to accurately describe the electronic band structure in conjunction with the Boltzmann Transport theory to investigate the electronic transport properties. We calculate the lattice thermal conductivity using first principles calculations and evaluate the overall figure of merit. To validate our theoretical approach, we prepare semi-metallic HgTe samples and characterize their transport properties. Our first-principles calculations agree well with the experimental data. We show that intrinsic HgTe, a semimetal with large disparity in its electron and hole masses, has a high thermoelectric power factor that is comparable to the best known thermoelectric materials. Finally, we propose other possible materials with similar band structures as potential candidates for thermoelectric applications.
10 schema:genre article
11 schema:isAccessibleForFree true
12 schema:isPartOf Ne0ca79ead5c2478cbcc74d3c412e811e
13 Nf95749ac476b4d47aa5c7a32c5c4c536
14 sg:journal.1045337
15 schema:keywords Boltzmann transport theory
16 HgTe
17 ab initio calculations
18 alternative class
19 applications
20 approach
21 asymmetry
22 band
23 band gap
24 band structure
25 calculations
26 candidates
27 class
28 conduction
29 conductivity
30 conjunction
31 data
32 detail
33 disparities
34 electronic band structure
35 electronic transport properties
36 electrons
37 experimental data
38 factors
39 figure of merit
40 figures
41 first-principles calculations
42 gap
43 good thermoelectric material
44 high thermoelectric power factor
45 hole mass
46 idea
47 initio calculations
48 large asymmetry
49 large disparity
50 large thermoelectric power factor
51 lattice thermal conductivity
52 mass
53 materials
54 merits
55 overall figure
56 possible materials
57 potential candidate
58 potential thermoelectric materials
59 power factor
60 presence
61 principles calculations
62 properties
63 samples
64 semiconductors
65 semimetals
66 similar band structures
67 structure
68 theoretical approach
69 theory
70 thermal conductivity
71 thermoelectric applications
72 thermoelectric materials
73 thermoelectric power factor
74 transport properties
75 transport theory
76 valence band
77 work
78 schema:name Semi-metals as potential thermoelectric materials
79 schema:pagination 9876
80 schema:productId N7df0c5f151b14293b6623a65aa6f9349
81 N9442df63ae9e4e3087e87324b7a3c56c
82 Nf912f3f24d554c289a5d1499ab8c620f
83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105107357
84 https://doi.org/10.1038/s41598-018-28043-3
85 schema:sdDatePublished 2022-11-24T21:04
86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
87 schema:sdPublisher N8ca234e1e45d46ceb6adf734213d1dfc
88 schema:url https://doi.org/10.1038/s41598-018-28043-3
89 sgo:license sg:explorer/license/
90 sgo:sdDataset articles
91 rdf:type schema:ScholarlyArticle
92 N1abb5c1181ac40d2a234a85419baba39 rdf:first sg:person.010565540660.85
93 rdf:rest Nd700b1f8c62549738ae52c1200dc378f
94 N214d31f5d03b42ef87627b1b36ee0a9d rdf:first N27019924ae344e9885503517cfc8384a
95 rdf:rest N7eaf2fb9217b44ed896b56c5b88f4cd2
96 N27019924ae344e9885503517cfc8384a schema:affiliation grid-institutes:grid.27755.32
97 schema:familyName Liu
98 schema:givenName Han-Chun
99 rdf:type schema:Person
100 N5a7782ab05de407db838213b59b71be6 rdf:first sg:person.01151423462.61
101 rdf:rest Na6c6274a22ba4566a03fc04d8456d7c7
102 N7df0c5f151b14293b6623a65aa6f9349 schema:name dimensions_id
103 schema:value pub.1105107357
104 rdf:type schema:PropertyValue
105 N7eaf2fb9217b44ed896b56c5b88f4cd2 rdf:first sg:person.016146415042.66
106 rdf:rest N990c2d136f2c4a058383b5da57c65006
107 N8ca234e1e45d46ceb6adf734213d1dfc schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N9442df63ae9e4e3087e87324b7a3c56c schema:name pubmed_id
110 schema:value 29959341
111 rdf:type schema:PropertyValue
112 N990c2d136f2c4a058383b5da57c65006 rdf:first sg:person.010252015157.28
113 rdf:rest N5a7782ab05de407db838213b59b71be6
114 Na6c6274a22ba4566a03fc04d8456d7c7 rdf:first sg:person.01263466775.22
115 rdf:rest rdf:nil
116 Nd700b1f8c62549738ae52c1200dc378f rdf:first sg:person.011363121260.16
117 rdf:rest N214d31f5d03b42ef87627b1b36ee0a9d
118 Ne0ca79ead5c2478cbcc74d3c412e811e schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 Nf912f3f24d554c289a5d1499ab8c620f schema:name doi
121 schema:value 10.1038/s41598-018-28043-3
122 rdf:type schema:PropertyValue
123 Nf95749ac476b4d47aa5c7a32c5c4c536 schema:volumeNumber 8
124 rdf:type schema:PublicationVolume
125 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
126 schema:name Engineering
127 rdf:type schema:DefinedTerm
128 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
129 schema:name Materials Engineering
130 rdf:type schema:DefinedTerm
131 sg:journal.1045337 schema:issn 2045-2322
132 schema:name Scientific Reports
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
136 schema:familyName Poon
137 schema:givenName S. Joseph
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
139 rdf:type schema:Person
140 sg:person.010565540660.85 schema:affiliation grid-institutes:grid.27755.32
141 schema:familyName Markov
142 schema:givenName Maxime
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010565540660.85
144 rdf:type schema:Person
145 sg:person.011363121260.16 schema:affiliation grid-institutes:grid.27755.32
146 schema:familyName Hu
147 schema:givenName Xixiao
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011363121260.16
149 rdf:type schema:Person
150 sg:person.01151423462.61 schema:affiliation grid-institutes:grid.27755.32
151 schema:familyName Esfarjani
152 schema:givenName Keivan
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151423462.61
154 rdf:type schema:Person
155 sg:person.01263466775.22 schema:affiliation grid-institutes:grid.27755.32
156 schema:familyName Zebarjadi
157 schema:givenName Mona
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263466775.22
159 rdf:type schema:Person
160 sg:person.016146415042.66 schema:affiliation grid-institutes:grid.27755.32
161 schema:familyName Liu
162 schema:givenName Naiming
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016146415042.66
164 rdf:type schema:Person
165 sg:pub.10.1038/ncomms4786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004886457
166 https://doi.org/10.1038/ncomms4786
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nmat4461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024513144
169 https://doi.org/10.1038/nmat4461
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/srep27294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001999839
172 https://doi.org/10.1038/srep27294
173 rdf:type schema:CreativeWork
174 grid-institutes:grid.27755.32 schema:alternateName Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA
175 Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA
176 Department of Mechanical and Aerospace Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA
177 Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA
178 schema:name Department of Electrical and Computer Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA
179 Department of Materials Science and Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA
180 Department of Mechanical and Aerospace Engineering, University of Virginia, 22904, Charlottesville, Virginia, USA
181 Department of Physics, University of Virginia, 22904, Charlottesville, Virginia, USA
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...