Symmetry broken spin reorientation transition in epitaxial MgO/Fe/MgO layers with competing anisotropies View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Isidoro Martínez, Coriolan Tiusan, Michel Hehn, Mairbek Chshiev, Farkhad G. Aliev

ABSTRACT

The observation of perpendicular magnetic anisotropy (PMA) at MgO/Fe interfaces boosted the development of spintronic devices based on ultrathin ferromagnetic layers. Yet, magnetization reversal in the standard magnetic tunnel junctions (MTJs) with competing PMA and in-plane anisotropies remains unclear. Here we report on the field induced nonvolatile broken symmetry magnetization reorientation transition from the in-plane to the perpendicular (out of plane) state at temperatures below 50 K. The samples were 10 nm thick Fe in MgO/Fe(100)/MgO as stacking components of V/MgO/Fe/MgO/Fe/Co double barrier MTJs with an area of 20 × 20 μm2. Micromagnetic simulations with PMA and different second order anisotropies at the opposite Fe/MgO interfaces qualitatively reproduce the observed broken symmetry spin reorientation transition. Our findings open the possibilities to develop multistate epitaxial spintronics based on competing magnetic anisotropies. More... »

PAGES

9463

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-27720-7

DOI

http://dx.doi.org/10.1038/s41598-018-27720-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104656644

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29930248


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Dpto. Fisica de la Materia Condensada, IFIMAC and INC, Universidad Autonoma de Madrid, 28049, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez", 
        "givenName": "Isidoro", 
        "id": "sg:person.07456104777.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07456104777.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University of Cluj-Napoca", 
          "id": "https://www.grid.ac/institutes/grid.6827.b", 
          "name": [
            "Center of Superconductivity, Spintronics and Surface Science (C4S), Technical University of Cluj-Napoca, 400114, Cluj-Napoca, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tiusan", 
        "givenName": "Coriolan", 
        "id": "sg:person.016341607071.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016341607071.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Jean Lamour", 
          "id": "https://www.grid.ac/institutes/grid.461892.0", 
          "name": [
            "Institut Jean Lamour, Nancy-Universit\u00e9 Vandoeuvre Les Nancy Cedex, 54506, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hehn", 
        "givenName": "Michel", 
        "id": "sg:person.0744263535.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744263535.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Grenoble Alpes University", 
          "id": "https://www.grid.ac/institutes/grid.450307.5", 
          "name": [
            "Univ. Grenoble Alpes, CEA, CNRS, INAC-SPINTEC, 38000, Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chshiev", 
        "givenName": "Mairbek", 
        "id": "sg:person.0706155077.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706155077.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Dpto. Fisica de la Materia Condensada, IFIMAC and INC, Universidad Autonoma de Madrid, 28049, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aliev", 
        "givenName": "Farkhad G.", 
        "id": "sg:person.0671741356.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671741356.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.115.237202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000594580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.237202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000594580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4945682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002770403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep26877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006048319", 
          "https://doi.org/10.1038/srep26877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00617016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016525834", 
          "https://doi.org/10.1007/bf00617016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00617016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016525834", 
          "https://doi.org/10.1007/bf00617016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.184423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019804559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.184423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019804559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4899186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020462729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.ma201570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024637517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028007692", 
          "https://doi.org/10.1038/nmat2804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028007692", 
          "https://doi.org/10.1038/nmat2804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2016.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029213503", 
          "https://doi.org/10.1038/nnano.2016.84"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.066601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033727419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.066601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033727419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep14858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035168165", 
          "https://doi.org/10.1038/srep14858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.184431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036906841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.184431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036906841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.054401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037044452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.054401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037044452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/19/16/165201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045065959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/19/16/165201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045065959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2016.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045877144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/44/40/405001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046003555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2015.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046044578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/59/11/002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049002588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.064422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049352463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.064422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049352463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/47/44/445001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052868411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2793619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057867551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4775707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058066595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4798291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058073077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4809657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058077193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4828658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058085744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4843675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058087200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4929990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058095814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.6995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.6995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060550185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060550185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.220407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.220407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.092405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.092405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.014425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.014425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.014429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.014429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/25/9/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064229895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4978430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084151399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.89.025008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090400475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.89.025008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090400475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.5004968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091981063"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "The observation of perpendicular magnetic anisotropy (PMA) at MgO/Fe interfaces boosted the development of spintronic devices based on ultrathin ferromagnetic layers. Yet, magnetization reversal in the standard magnetic tunnel junctions (MTJs) with competing PMA and in-plane anisotropies remains unclear. Here we report on the field induced nonvolatile broken symmetry magnetization reorientation transition from the in-plane to the perpendicular (out of plane) state at temperatures below 50\u2009K. The samples were 10 nm thick Fe in MgO/Fe(100)/MgO as stacking components of V/MgO/Fe/MgO/Fe/Co double barrier MTJs with an area of 20\u2009\u00d7\u200920\u2009\u03bcm2. Micromagnetic simulations with PMA and different second order anisotropies at the opposite Fe/MgO interfaces qualitatively reproduce the observed broken symmetry spin reorientation transition. Our findings open the possibilities to develop multistate epitaxial spintronics based on competing magnetic anisotropies.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-27720-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Symmetry broken spin reorientation transition in epitaxial MgO/Fe/MgO layers with competing anisotropies", 
    "pagination": "9463", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b15da14ebe10d59ea97e0838a184e08b5bd30ec95e40c726032e194c3b7efc4d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29930248"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-27720-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104656644"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-27720-7", 
      "https://app.dimensions.ai/details/publication/pub.1104656644"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T02:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-27720-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27720-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27720-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27720-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27720-7'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      66 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-27720-7 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Nd2eccf807072477cbcc8b44b94af01b8
4 schema:citation sg:pub.10.1007/bf00617016
5 sg:pub.10.1038/nmat2804
6 sg:pub.10.1038/nnano.2016.84
7 sg:pub.10.1038/srep14858
8 sg:pub.10.1038/srep26877
9 https://doi.org/10.1016/j.jmmm.2015.05.013
10 https://doi.org/10.1016/j.jmmm.2016.04.027
11 https://doi.org/10.1063/1.2793619
12 https://doi.org/10.1063/1.4775707
13 https://doi.org/10.1063/1.4798291
14 https://doi.org/10.1063/1.4809657
15 https://doi.org/10.1063/1.4828658
16 https://doi.org/10.1063/1.4843675
17 https://doi.org/10.1063/1.4899186
18 https://doi.org/10.1063/1.4929990
19 https://doi.org/10.1063/1.4945682
20 https://doi.org/10.1063/1.4978430
21 https://doi.org/10.1063/1.5004968
22 https://doi.org/10.1088/0022-3727/44/40/405001
23 https://doi.org/10.1088/0022-3727/47/44/445001
24 https://doi.org/10.1088/0034-4885/59/11/002
25 https://doi.org/10.1088/0953-8984/19/16/165201
26 https://doi.org/10.1103/physrevb.39.6995
27 https://doi.org/10.1103/physrevb.39.865
28 https://doi.org/10.1103/physrevb.81.220407
29 https://doi.org/10.1103/physrevb.82.092405
30 https://doi.org/10.1103/physrevb.84.054401
31 https://doi.org/10.1103/physrevb.86.014425
32 https://doi.org/10.1103/physrevb.87.184431
33 https://doi.org/10.1103/physrevb.88.184423
34 https://doi.org/10.1103/physrevb.90.064422
35 https://doi.org/10.1103/physrevb.93.014429
36 https://doi.org/10.1103/physrevlett.109.066601
37 https://doi.org/10.1103/physrevlett.115.237202
38 https://doi.org/10.1103/revmodphys.89.025008
39 https://doi.org/10.1209/0295-5075/25/9/015
40 https://doi.org/10.2320/matertrans.ma201570
41 schema:datePublished 2018-12
42 schema:datePublishedReg 2018-12-01
43 schema:description The observation of perpendicular magnetic anisotropy (PMA) at MgO/Fe interfaces boosted the development of spintronic devices based on ultrathin ferromagnetic layers. Yet, magnetization reversal in the standard magnetic tunnel junctions (MTJs) with competing PMA and in-plane anisotropies remains unclear. Here we report on the field induced nonvolatile broken symmetry magnetization reorientation transition from the in-plane to the perpendicular (out of plane) state at temperatures below 50 K. The samples were 10 nm thick Fe in MgO/Fe(100)/MgO as stacking components of V/MgO/Fe/MgO/Fe/Co double barrier MTJs with an area of 20 × 20 μm<sup>2</sup>. Micromagnetic simulations with PMA and different second order anisotropies at the opposite Fe/MgO interfaces qualitatively reproduce the observed broken symmetry spin reorientation transition. Our findings open the possibilities to develop multistate epitaxial spintronics based on competing magnetic anisotropies.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree true
47 schema:isPartOf Nb09ec1d403404b65b5a25642b9cb37a0
48 Ne2a5f6f681be4d73ae5802e1379cbc6b
49 sg:journal.1045337
50 schema:name Symmetry broken spin reorientation transition in epitaxial MgO/Fe/MgO layers with competing anisotropies
51 schema:pagination 9463
52 schema:productId N3388c0e9822e4a07b48a73dae69e5acd
53 N41946d4526e84e56be7615e836e0a594
54 N9e640d30176d4e8590f8632a772e834b
55 Nb0dafa25395b4080a47d1f451c417569
56 Nc8a6cad834bc456a8a0f75c2b036a177
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104656644
58 https://doi.org/10.1038/s41598-018-27720-7
59 schema:sdDatePublished 2019-04-11T02:32
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N572f0b62d60b421aa0579696f19c4429
62 schema:url https://www.nature.com/articles/s41598-018-27720-7
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N3388c0e9822e4a07b48a73dae69e5acd schema:name readcube_id
67 schema:value b15da14ebe10d59ea97e0838a184e08b5bd30ec95e40c726032e194c3b7efc4d
68 rdf:type schema:PropertyValue
69 N41946d4526e84e56be7615e836e0a594 schema:name doi
70 schema:value 10.1038/s41598-018-27720-7
71 rdf:type schema:PropertyValue
72 N572f0b62d60b421aa0579696f19c4429 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N583946e058474fafbb6a42a105cb28d4 rdf:first sg:person.0706155077.64
75 rdf:rest Na7cc60c2c32f44cfa4cd3c8e06bd2d2e
76 N89590f5611d5472e896b5000f227e89c rdf:first sg:person.0744263535.81
77 rdf:rest N583946e058474fafbb6a42a105cb28d4
78 N9e640d30176d4e8590f8632a772e834b schema:name nlm_unique_id
79 schema:value 101563288
80 rdf:type schema:PropertyValue
81 Na7cc60c2c32f44cfa4cd3c8e06bd2d2e rdf:first sg:person.0671741356.32
82 rdf:rest rdf:nil
83 Nb09ec1d403404b65b5a25642b9cb37a0 schema:issueNumber 1
84 rdf:type schema:PublicationIssue
85 Nb0dafa25395b4080a47d1f451c417569 schema:name pubmed_id
86 schema:value 29930248
87 rdf:type schema:PropertyValue
88 Nc8a6cad834bc456a8a0f75c2b036a177 schema:name dimensions_id
89 schema:value pub.1104656644
90 rdf:type schema:PropertyValue
91 Nd2eccf807072477cbcc8b44b94af01b8 rdf:first sg:person.07456104777.12
92 rdf:rest Ne462c6da54f44d50aa15fcaed68433ba
93 Ne2a5f6f681be4d73ae5802e1379cbc6b schema:volumeNumber 8
94 rdf:type schema:PublicationVolume
95 Ne462c6da54f44d50aa15fcaed68433ba rdf:first sg:person.016341607071.91
96 rdf:rest N89590f5611d5472e896b5000f227e89c
97 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
98 schema:name Physical Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
101 schema:name Condensed Matter Physics
102 rdf:type schema:DefinedTerm
103 sg:journal.1045337 schema:issn 2045-2322
104 schema:name Scientific Reports
105 rdf:type schema:Periodical
106 sg:person.016341607071.91 schema:affiliation https://www.grid.ac/institutes/grid.6827.b
107 schema:familyName Tiusan
108 schema:givenName Coriolan
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016341607071.91
110 rdf:type schema:Person
111 sg:person.0671741356.32 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
112 schema:familyName Aliev
113 schema:givenName Farkhad G.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0671741356.32
115 rdf:type schema:Person
116 sg:person.0706155077.64 schema:affiliation https://www.grid.ac/institutes/grid.450307.5
117 schema:familyName Chshiev
118 schema:givenName Mairbek
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706155077.64
120 rdf:type schema:Person
121 sg:person.0744263535.81 schema:affiliation https://www.grid.ac/institutes/grid.461892.0
122 schema:familyName Hehn
123 schema:givenName Michel
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0744263535.81
125 rdf:type schema:Person
126 sg:person.07456104777.12 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
127 schema:familyName Martínez
128 schema:givenName Isidoro
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07456104777.12
130 rdf:type schema:Person
131 sg:pub.10.1007/bf00617016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016525834
132 https://doi.org/10.1007/bf00617016
133 rdf:type schema:CreativeWork
134 sg:pub.10.1038/nmat2804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028007692
135 https://doi.org/10.1038/nmat2804
136 rdf:type schema:CreativeWork
137 sg:pub.10.1038/nnano.2016.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029213503
138 https://doi.org/10.1038/nnano.2016.84
139 rdf:type schema:CreativeWork
140 sg:pub.10.1038/srep14858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035168165
141 https://doi.org/10.1038/srep14858
142 rdf:type schema:CreativeWork
143 sg:pub.10.1038/srep26877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006048319
144 https://doi.org/10.1038/srep26877
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jmmm.2015.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046044578
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jmmm.2016.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045877144
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.2793619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057867551
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.4775707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058066595
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.4798291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058073077
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.4809657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058077193
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.4828658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058085744
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1063/1.4843675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058087200
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1063/1.4899186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020462729
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.4929990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058095814
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.4945682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002770403
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.4978430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084151399
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.5004968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091981063
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1088/0022-3727/44/40/405001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046003555
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1088/0022-3727/47/44/445001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052868411
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1088/0034-4885/59/11/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049002588
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/0953-8984/19/16/165201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045065959
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.39.6995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549900
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.39.865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060550185
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.81.220407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632813
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.82.092405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633545
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.84.054401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037044452
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.86.014425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639322
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.87.184431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036906841
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.88.184423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019804559
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevb.90.064422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049352463
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevb.93.014429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648460
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.109.066601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033727419
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.115.237202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000594580
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/revmodphys.89.025008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090400475
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1209/0295-5075/25/9/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064229895
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2320/matertrans.ma201570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024637517
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.450307.5 schema:alternateName Grenoble Alpes University
211 schema:name Univ. Grenoble Alpes, CEA, CNRS, INAC-SPINTEC, 38000, Grenoble, France
212 rdf:type schema:Organization
213 https://www.grid.ac/institutes/grid.461892.0 schema:alternateName Institut Jean Lamour
214 schema:name Institut Jean Lamour, Nancy-Université Vandoeuvre Les Nancy Cedex, 54506, Nancy, France
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.5515.4 schema:alternateName Autonomous University of Madrid
217 schema:name Dpto. Fisica de la Materia Condensada, IFIMAC and INC, Universidad Autonoma de Madrid, 28049, Madrid, Spain
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.6827.b schema:alternateName Technical University of Cluj-Napoca
220 schema:name Center of Superconductivity, Spintronics and Surface Science (C4S), Technical University of Cluj-Napoca, 400114, Cluj-Napoca, Romania
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...