N-doped graphene-based copper nanocomposite with ultralow electrical resistivity and high thermal conductivity View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Liang Zheng, Hui Zheng, Dexuan Huo, Feimei Wu, Lihuan Shao, Peng Zheng, Yuan Jiang, Xiaolong Zheng, Xinping Qiu, Yan Liu, Yang Zhang

ABSTRACT

Nanocomposite with a room-temperature ultra-low resistivity far below that of conventional metals like copper is considered as the next generation conductor. However, many technical and scientific problems are encountered in the fabrication of such nanocomposite materials at present. Here, we report the rapid and efficient fabrication and characterization of a novel nitrogen-doped graphene-copper nanocomposite. Silk fibroin was used as a precursor and placed on a copper substrate, followed by the microwave plasma treatment. This resulted nitrogen-doped graphene-copper composite possesses an electrical resistivity of 0.16 µΩ·cm at room temperature, far lower than that of copper. In addition, the composite has superior thermal conductivity (538 W/m·K at 25 °C) which is 138% of copper. The combination of excellent thermal conductivity and ultra-low electrical resistivity opens up potentials in next-generation conductors. More... »

PAGES

9248

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-27667-9

DOI

http://dx.doi.org/10.1038/s41598-018-27667-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104575389

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29915304


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Liang", 
        "id": "sg:person.010003525446.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010003525446.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Hui", 
        "id": "sg:person.010553510120.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553510120.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Institute of Materials Physics, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huo", 
        "givenName": "Dexuan", 
        "id": "sg:person.012303351101.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351101.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Feimei", 
        "id": "sg:person.013143334274.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143334274.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Lihuan", 
        "id": "sg:person.014350207104.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350207104.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Peng", 
        "id": "sg:person.0601354033.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601354033.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Yuan", 
        "id": "sg:person.015333655674.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333655674.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Xiaolong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tsinghua University", 
          "id": "https://www.grid.ac/institutes/grid.12527.33", 
          "name": [
            "Department of Chemistry, Tsinghua University, 10084, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qiu", 
        "givenName": "Xinping", 
        "id": "sg:person.0701710253.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701710253.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "California State Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.155203.0", 
          "name": [
            "Chemistry and Biochemistry Department, California State Polytechnic University-, 91768, Pomona, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Yan", 
        "id": "sg:person.012013613463.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012013613463.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hangzhou Dianzi University", 
          "id": "https://www.grid.ac/institutes/grid.411963.8", 
          "name": [
            "Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yang", 
        "id": "sg:person.014204135063.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204135063.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.97.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.187401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001174697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0731872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002634830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl0731872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002634830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/24/47/475305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009008892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201302495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009659468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009764639", 
          "https://doi.org/10.1038/nphys2549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-003-2424-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013296963", 
          "https://doi.org/10.1007/s00339-003-2424-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11663-011-9597-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013466417", 
          "https://doi.org/10.1007/s11663-011-9597-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3524232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014203258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b01664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014260379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/app4040525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019770030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2010.04.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020700026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023991100", 
          "https://doi.org/10.1038/nmat3064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tca.2015.08.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026819349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2015.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031824582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn301241p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036118741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2017.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036479555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2017.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036479555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2017.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036479555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra03585b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036492084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039175917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1184014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039175917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn2006249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041261973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12952", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041434768", 
          "https://doi.org/10.1038/nature12952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn203176u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047301244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2007.2155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050222274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051445347", 
          "https://doi.org/10.1038/ncomms3202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6633/80/3/036502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053753825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl404719n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl501411g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4821439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058082593"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.195432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060638937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195443", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060638937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mspec.2009.5267996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061429618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2017.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084063534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2017.10.099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092478863"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Nanocomposite with a room-temperature ultra-low resistivity far below that of conventional metals like copper is considered as the next generation conductor. However, many technical and scientific problems are encountered in the fabrication of such nanocomposite materials at present. Here, we report the rapid and efficient fabrication and characterization of a novel nitrogen-doped graphene-copper nanocomposite. Silk fibroin was used as a precursor and placed on a copper substrate, followed by the microwave plasma treatment. This resulted nitrogen-doped graphene-copper composite possesses an electrical resistivity of 0.16 \u00b5\u03a9\u00b7cm at room temperature, far lower than that of copper. In addition, the composite has superior thermal conductivity (538\u2009W/m\u00b7K at 25\u2009\u00b0C) which is 138% of copper. The combination of excellent thermal conductivity and ultra-low electrical resistivity opens up potentials in next-generation conductors.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-27667-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "N-doped graphene-based copper nanocomposite with ultralow electrical resistivity and high thermal conductivity", 
    "pagination": "9248", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f0a0a6f6be446b7e1b6068e94c7fa5263fc328cd0aed6f2233681b2f3940d108"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29915304"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-27667-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104575389"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-27667-9", 
      "https://app.dimensions.ai/details/publication/pub.1104575389"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-27667-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27667-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27667-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27667-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27667-9'


 

This table displays all metadata directly associated to this object as RDF triples.

249 TRIPLES      21 PREDICATES      62 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-27667-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3a082b8cf9d54ab8b1fc5cc7fd315204
4 schema:citation sg:pub.10.1007/s00339-003-2424-x
5 sg:pub.10.1007/s11663-011-9597-z
6 sg:pub.10.1038/nature12952
7 sg:pub.10.1038/ncomms3202
8 sg:pub.10.1038/nmat3064
9 sg:pub.10.1038/nphys2549
10 https://doi.org/10.1002/adma.201302495
11 https://doi.org/10.1016/j.carbon.2010.04.046
12 https://doi.org/10.1016/j.carbon.2015.06.002
13 https://doi.org/10.1016/j.carbon.2017.03.025
14 https://doi.org/10.1016/j.carbon.2017.10.099
15 https://doi.org/10.1016/j.matdes.2017.01.018
16 https://doi.org/10.1016/j.tca.2015.08.034
17 https://doi.org/10.1021/acs.nanolett.5b01664
18 https://doi.org/10.1021/nl0731872
19 https://doi.org/10.1021/nl404719n
20 https://doi.org/10.1021/nl501411g
21 https://doi.org/10.1021/nn2006249
22 https://doi.org/10.1021/nn203176u
23 https://doi.org/10.1021/nn301241p
24 https://doi.org/10.1039/c4ra03585b
25 https://doi.org/10.1063/1.3524232
26 https://doi.org/10.1063/1.4821439
27 https://doi.org/10.1088/0953-8984/24/47/475305
28 https://doi.org/10.1088/1361-6633/80/3/036502
29 https://doi.org/10.1098/rsta.2007.2155
30 https://doi.org/10.1103/physrevb.84.195432
31 https://doi.org/10.1103/physrevb.85.195443
32 https://doi.org/10.1103/physrevlett.97.187401
33 https://doi.org/10.1109/mspec.2009.5267996
34 https://doi.org/10.1126/science.1102896
35 https://doi.org/10.1126/science.1184014
36 https://doi.org/10.3390/app4040525
37 schema:datePublished 2018-12
38 schema:datePublishedReg 2018-12-01
39 schema:description Nanocomposite with a room-temperature ultra-low resistivity far below that of conventional metals like copper is considered as the next generation conductor. However, many technical and scientific problems are encountered in the fabrication of such nanocomposite materials at present. Here, we report the rapid and efficient fabrication and characterization of a novel nitrogen-doped graphene-copper nanocomposite. Silk fibroin was used as a precursor and placed on a copper substrate, followed by the microwave plasma treatment. This resulted nitrogen-doped graphene-copper composite possesses an electrical resistivity of 0.16 µΩ·cm at room temperature, far lower than that of copper. In addition, the composite has superior thermal conductivity (538 W/m·K at 25 °C) which is 138% of copper. The combination of excellent thermal conductivity and ultra-low electrical resistivity opens up potentials in next-generation conductors.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree true
43 schema:isPartOf N7e9f25c16f0f47b39f66c4e758e8c6c5
44 Ne53cdfecb1d44bca820732627ee49872
45 sg:journal.1045337
46 schema:name N-doped graphene-based copper nanocomposite with ultralow electrical resistivity and high thermal conductivity
47 schema:pagination 9248
48 schema:productId N1eda84c765a04004b295cafb26d63205
49 N5bba024b04ba466e896bf99ef45fe59e
50 N62e7a21b146948529bcea4a86987fa93
51 Ne1ccf05a38f1474dbc0b513271fc7683
52 Nf50b298958164f12b790a64b150a5f2f
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104575389
54 https://doi.org/10.1038/s41598-018-27667-9
55 schema:sdDatePublished 2019-04-10T16:05
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Na72b7025e69a4f80a85384572aaa8d41
58 schema:url https://www.nature.com/articles/s41598-018-27667-9
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0582a974790f45c7b6d172f3f18b426c rdf:first sg:person.014350207104.24
63 rdf:rest Nfc859c41d35f445d9cedc15cfaabdbb4
64 N17b03e71f149486fa43ec4c5fb8813b9 rdf:first sg:person.015333655674.96
65 rdf:rest Nb54381c2d1574b88bf0ac4eca13c0d7d
66 N1eda84c765a04004b295cafb26d63205 schema:name nlm_unique_id
67 schema:value 101563288
68 rdf:type schema:PropertyValue
69 N278ecae65c3a463bab18a55dd592ca31 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
70 schema:familyName Zheng
71 schema:givenName Xiaolong
72 rdf:type schema:Person
73 N3a082b8cf9d54ab8b1fc5cc7fd315204 rdf:first sg:person.010003525446.32
74 rdf:rest N5307506e566747b6adc51269ff3a2993
75 N4f1def753adc4253b809a53801e677da rdf:first sg:person.012013613463.75
76 rdf:rest N5aff06542b6e49409a29b661648f2e10
77 N5307506e566747b6adc51269ff3a2993 rdf:first sg:person.010553510120.29
78 rdf:rest N69d9dbea112d4614ae950a65a20d8ae0
79 N5aff06542b6e49409a29b661648f2e10 rdf:first sg:person.014204135063.00
80 rdf:rest rdf:nil
81 N5bba024b04ba466e896bf99ef45fe59e schema:name pubmed_id
82 schema:value 29915304
83 rdf:type schema:PropertyValue
84 N62e7a21b146948529bcea4a86987fa93 schema:name readcube_id
85 schema:value f0a0a6f6be446b7e1b6068e94c7fa5263fc328cd0aed6f2233681b2f3940d108
86 rdf:type schema:PropertyValue
87 N69d9dbea112d4614ae950a65a20d8ae0 rdf:first sg:person.012303351101.19
88 rdf:rest N7aa50b05b7c544c1a2965caab69a0976
89 N7aa50b05b7c544c1a2965caab69a0976 rdf:first sg:person.013143334274.03
90 rdf:rest N0582a974790f45c7b6d172f3f18b426c
91 N7e9f25c16f0f47b39f66c4e758e8c6c5 schema:volumeNumber 8
92 rdf:type schema:PublicationVolume
93 N9a79fac1392645b18235d2cc8932bead rdf:first sg:person.0701710253.64
94 rdf:rest N4f1def753adc4253b809a53801e677da
95 Na72b7025e69a4f80a85384572aaa8d41 schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 Nb54381c2d1574b88bf0ac4eca13c0d7d rdf:first N278ecae65c3a463bab18a55dd592ca31
98 rdf:rest N9a79fac1392645b18235d2cc8932bead
99 Ne1ccf05a38f1474dbc0b513271fc7683 schema:name doi
100 schema:value 10.1038/s41598-018-27667-9
101 rdf:type schema:PropertyValue
102 Ne53cdfecb1d44bca820732627ee49872 schema:issueNumber 1
103 rdf:type schema:PublicationIssue
104 Nf50b298958164f12b790a64b150a5f2f schema:name dimensions_id
105 schema:value pub.1104575389
106 rdf:type schema:PropertyValue
107 Nfc859c41d35f445d9cedc15cfaabdbb4 rdf:first sg:person.0601354033.04
108 rdf:rest N17b03e71f149486fa43ec4c5fb8813b9
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
113 schema:name Materials Engineering
114 rdf:type schema:DefinedTerm
115 sg:journal.1045337 schema:issn 2045-2322
116 schema:name Scientific Reports
117 rdf:type schema:Periodical
118 sg:person.010003525446.32 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
119 schema:familyName Zheng
120 schema:givenName Liang
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010003525446.32
122 rdf:type schema:Person
123 sg:person.010553510120.29 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
124 schema:familyName Zheng
125 schema:givenName Hui
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553510120.29
127 rdf:type schema:Person
128 sg:person.012013613463.75 schema:affiliation https://www.grid.ac/institutes/grid.155203.0
129 schema:familyName Liu
130 schema:givenName Yan
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012013613463.75
132 rdf:type schema:Person
133 sg:person.012303351101.19 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
134 schema:familyName Huo
135 schema:givenName Dexuan
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012303351101.19
137 rdf:type schema:Person
138 sg:person.013143334274.03 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
139 schema:familyName Wu
140 schema:givenName Feimei
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013143334274.03
142 rdf:type schema:Person
143 sg:person.014204135063.00 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
144 schema:familyName Zhang
145 schema:givenName Yang
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014204135063.00
147 rdf:type schema:Person
148 sg:person.014350207104.24 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
149 schema:familyName Shao
150 schema:givenName Lihuan
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014350207104.24
152 rdf:type schema:Person
153 sg:person.015333655674.96 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
154 schema:familyName Jiang
155 schema:givenName Yuan
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015333655674.96
157 rdf:type schema:Person
158 sg:person.0601354033.04 schema:affiliation https://www.grid.ac/institutes/grid.411963.8
159 schema:familyName Zheng
160 schema:givenName Peng
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0601354033.04
162 rdf:type schema:Person
163 sg:person.0701710253.64 schema:affiliation https://www.grid.ac/institutes/grid.12527.33
164 schema:familyName Qiu
165 schema:givenName Xinping
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701710253.64
167 rdf:type schema:Person
168 sg:pub.10.1007/s00339-003-2424-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013296963
169 https://doi.org/10.1007/s00339-003-2424-x
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s11663-011-9597-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013466417
172 https://doi.org/10.1007/s11663-011-9597-z
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nature12952 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041434768
175 https://doi.org/10.1038/nature12952
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ncomms3202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051445347
178 https://doi.org/10.1038/ncomms3202
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat3064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023991100
181 https://doi.org/10.1038/nmat3064
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nphys2549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009764639
184 https://doi.org/10.1038/nphys2549
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1002/adma.201302495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009659468
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.carbon.2010.04.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020700026
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.carbon.2015.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031824582
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.carbon.2017.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084063534
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.carbon.2017.10.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092478863
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.matdes.2017.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036479555
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.tca.2015.08.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026819349
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1021/acs.nanolett.5b01664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014260379
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1021/nl0731872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002634830
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1021/nl404719n schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220597
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1021/nl501411g schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220800
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1021/nn2006249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041261973
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1021/nn203176u schema:sameAs https://app.dimensions.ai/details/publication/pub.1047301244
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1021/nn301241p schema:sameAs https://app.dimensions.ai/details/publication/pub.1036118741
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1039/c4ra03585b schema:sameAs https://app.dimensions.ai/details/publication/pub.1036492084
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1063/1.3524232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014203258
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1063/1.4821439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058082593
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1088/0953-8984/24/47/475305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009008892
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1088/1361-6633/80/3/036502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053753825
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1098/rsta.2007.2155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050222274
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevb.84.195432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637453
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevb.85.195443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060638937
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.97.187401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001174697
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1109/mspec.2009.5267996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061429618
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1126/science.1184014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039175917
237 rdf:type schema:CreativeWork
238 https://doi.org/10.3390/app4040525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019770030
239 rdf:type schema:CreativeWork
240 https://www.grid.ac/institutes/grid.12527.33 schema:alternateName Tsinghua University
241 schema:name Department of Chemistry, Tsinghua University, 10084, Beijing, China
242 rdf:type schema:Organization
243 https://www.grid.ac/institutes/grid.155203.0 schema:alternateName California State Polytechnic University
244 schema:name Chemistry and Biochemistry Department, California State Polytechnic University-, 91768, Pomona, CA, USA
245 rdf:type schema:Organization
246 https://www.grid.ac/institutes/grid.411963.8 schema:alternateName Hangzhou Dianzi University
247 schema:name Institute of Materials Physics, Hangzhou Dianzi University, 310018, Hangzhou, China
248 Laboratory for Nanoelectronics and NanoDevices, School of Electronic Information, Hangzhou Dianzi University, 310018, Hangzhou, China
249 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...