Optical Chirality of Time-Harmonic Wavefields for Classification of Scatterers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Philipp Gutsche, Manuel Nieto-Vesperinas

ABSTRACT

We derive expressions for the scattering, extinction and conversion of the chirality of monochromatic light scattered by bodies which are characterized by a T-matrix. In analogy to the conditions obtained from the conservation of energy, these quantities enable the classification of arbitrary scattering objects due to their full, i.e. either chiral or achiral, electromagnetic response. To this end, we put forward and determine the concepts of duality and breaking of duality symmetry, anti-duality, helicity variation, helicity annhiliation and the breaking of helicity annihilation. Different classes, such as chiral and dual scatterers, are illustrated in this analysis with model examples of spherical and non-spherical shape. As for spheres, these concepts are analysed by considering non-Rayleigh dipolar dielectric particles of high refractive index, which, having a strong magnetic response to the incident wavefield, offer an excellent laboratory to test and interpret such changes in the chirality of the illumination. In addition, comparisons with existing experimental data are made. More... »

PAGES

9416

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-27496-w

DOI

http://dx.doi.org/10.1038/s41598-018-27496-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104611853

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29925847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Zuse Institute Berlin", 
          "id": "https://www.grid.ac/institutes/grid.425649.8", 
          "name": [
            "Freie Universit\u00e4t Berlin, Mathematics Institute, 14195 Berlin, Germany", 
            "Zuse Institute Berlin, Computational Nano Optics, 14195 Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gutsche", 
        "givenName": "Philipp", 
        "id": "sg:person.010066336773.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010066336773.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituto de Ciencia de Materiales de Madrid", 
          "id": "https://www.grid.ac/institutes/grid.452504.2", 
          "name": [
            "Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cient\u00edficas, 28049, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nieto-Vesperinas", 
        "givenName": "Manuel", 
        "id": "sg:person.01217074277.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217074277.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c5nr08527f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000740523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2167", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005266489", 
          "https://doi.org/10.1038/ncomms2167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.031013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005544508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.6.031013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005544508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-6638(08)70391-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005998450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.085111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010513245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.085111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010513245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/12/123009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016139644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa9519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018493732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.2.031010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018938388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.2.031010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018938388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep23186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024097840", 
          "https://doi.org/10.1038/srep23186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2209551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026194445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027063897", 
          "https://doi.org/10.1038/nphoton.2015.201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep08207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027908545", 
          "https://doi.org/10.1038/srep08207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/photonics3040060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029892253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2025141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031157500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.033601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031680703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.033601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031680703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.031230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032349208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033154337", 
          "https://doi.org/10.1038/srep00492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035638022", 
          "https://doi.org/10.1038/ncomms2538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.031874", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037271350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2015.200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039969955", 
          "https://doi.org/10.1038/nphoton.2015.200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2014.64", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040084391", 
          "https://doi.org/10.1038/lsa.2014.64"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.87.012504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041659598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.87.012504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041659598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.021803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042534609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.021803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042534609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.235409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044807169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.235409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044807169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.060401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048254389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.060401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048254389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl501032j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049765371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6nr00676k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049937672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1202817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050252085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.3603941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051578381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2015.02.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051763188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.163901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052250269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.163901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052250269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr60310a001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053898246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr60295a004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053961308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055138949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl4005018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn402736f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056225382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ph500419a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056290074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1704165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057774107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/14/5/053050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059135754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/18/3/033012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059137333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2040-8978/17/10/105612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059180534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2040-8978/18/10/103001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059180908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.023813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.92.023813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060513967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.045404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.045404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060633271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.165426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.165426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.245108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.91.245108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060646239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.083903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.083903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1152697", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aag2472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062668357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josa.73.000765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065156292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josaa.28.000054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065162972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.004815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065196049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.024444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065201680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.38.001857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065233834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsphotonics.6b00887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083827123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2016.0314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083851847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2040-8986/aa6528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084176294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3762/bjnano.8.66", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084440779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/sciadv.1602735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085432380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/5833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098835742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ls.2015.lm1h.2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098982004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/ma11020213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100734399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.8b00083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101507152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1108429520", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511795213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108467033"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "We derive expressions for the scattering, extinction and conversion of the chirality of monochromatic light scattered by bodies which are characterized by a T-matrix. In analogy to the conditions obtained from the conservation of energy, these quantities enable the classification of arbitrary scattering objects due to their full, i.e. either chiral or achiral, electromagnetic response. To this end, we put forward and determine the concepts of duality and breaking of duality symmetry, anti-duality, helicity variation, helicity annhiliation and the breaking of helicity annihilation. Different classes, such as chiral and dual scatterers, are illustrated in this analysis with model examples of spherical and non-spherical shape. As for spheres, these concepts are analysed by considering non-Rayleigh dipolar dielectric particles of high refractive index, which, having a strong magnetic response to the incident wavefield, offer an excellent laboratory to test and interpret such changes in the chirality of the illumination. In addition, comparisons with existing experimental data are made.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-27496-w", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Optical Chirality of Time-Harmonic Wavefields for Classification of Scatterers", 
    "pagination": "9416", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5eaeed30668ee7238bdec56ae872baf38611f7c790df04d19db127daba6b971a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29925847"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-27496-w"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104611853"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-27496-w", 
      "https://app.dimensions.ai/details/publication/pub.1104611853"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000604.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-27496-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27496-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27496-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27496-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27496-w'


 

This table displays all metadata directly associated to this object as RDF triples.

284 TRIPLES      21 PREDICATES      95 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-27496-w schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7bbe57cd31224825a6bee6e0cf161fb4
4 schema:citation sg:pub.10.1038/lsa.2014.64
5 sg:pub.10.1038/ncomms2167
6 sg:pub.10.1038/ncomms2538
7 sg:pub.10.1038/nphoton.2015.200
8 sg:pub.10.1038/nphoton.2015.201
9 sg:pub.10.1038/srep00492
10 sg:pub.10.1038/srep08207
11 sg:pub.10.1038/srep23186
12 https://app.dimensions.ai/details/publication/pub.1108429520
13 https://doi.org/10.1016/j.cplett.2015.02.051
14 https://doi.org/10.1016/s0079-6638(08)70391-3
15 https://doi.org/10.1017/cbo9780511795213
16 https://doi.org/10.1021/acs.nanolett.8b00083
17 https://doi.org/10.1021/acsphotonics.6b00147
18 https://doi.org/10.1021/acsphotonics.6b00201
19 https://doi.org/10.1021/acsphotonics.6b00887
20 https://doi.org/10.1021/cr60295a004
21 https://doi.org/10.1021/cr60310a001
22 https://doi.org/10.1021/nl4005018
23 https://doi.org/10.1021/nl501032j
24 https://doi.org/10.1021/nn402736f
25 https://doi.org/10.1021/ph500419a
26 https://doi.org/10.1039/c5nr08527f
27 https://doi.org/10.1039/c6nr00676k
28 https://doi.org/10.1063/1.1704165
29 https://doi.org/10.1088/1367-2630/14/12/123009
30 https://doi.org/10.1088/1367-2630/14/5/053050
31 https://doi.org/10.1088/1367-2630/18/3/033012
32 https://doi.org/10.1088/2040-8978/17/10/105612
33 https://doi.org/10.1088/2040-8978/18/10/103001
34 https://doi.org/10.1088/2040-8986/aa6528
35 https://doi.org/10.1098/rsta.2016.0314
36 https://doi.org/10.1103/physreva.83.021803
37 https://doi.org/10.1103/physreva.87.012504
38 https://doi.org/10.1103/physreva.92.023813
39 https://doi.org/10.1103/physrevb.82.045404
40 https://doi.org/10.1103/physrevb.83.165426
41 https://doi.org/10.1103/physrevb.87.235409
42 https://doi.org/10.1103/physrevb.88.085111
43 https://doi.org/10.1103/physrevb.91.245108
44 https://doi.org/10.1103/physrevlett.104.083903
45 https://doi.org/10.1103/physrevlett.104.163901
46 https://doi.org/10.1103/physrevlett.111.060401
47 https://doi.org/10.1103/physrevlett.113.033601
48 https://doi.org/10.1103/physrevx.2.031010
49 https://doi.org/10.1103/physrevx.6.031013
50 https://doi.org/10.1117/1.3603941
51 https://doi.org/10.1117/12.2025141
52 https://doi.org/10.1117/12.2209551
53 https://doi.org/10.1126/sciadv.1602735
54 https://doi.org/10.1126/science.1152697
55 https://doi.org/10.1126/science.1202817
56 https://doi.org/10.1126/science.aaa9519
57 https://doi.org/10.1126/science.aag2472
58 https://doi.org/10.1142/5833
59 https://doi.org/10.1364/josa.73.000765
60 https://doi.org/10.1364/josaa.28.000054
61 https://doi.org/10.1364/ls.2015.lm1h.2
62 https://doi.org/10.1364/oe.19.004815
63 https://doi.org/10.1364/oe.20.024444
64 https://doi.org/10.1364/oe.23.031230
65 https://doi.org/10.1364/oe.23.031874
66 https://doi.org/10.1364/ol.38.001857
67 https://doi.org/10.3390/ma11020213
68 https://doi.org/10.3390/photonics3040060
69 https://doi.org/10.3762/bjnano.8.66
70 schema:datePublished 2018-12
71 schema:datePublishedReg 2018-12-01
72 schema:description We derive expressions for the scattering, extinction and conversion of the chirality of monochromatic light scattered by bodies which are characterized by a T-matrix. In analogy to the conditions obtained from the conservation of energy, these quantities enable the classification of arbitrary scattering objects due to their full, i.e. either chiral or achiral, electromagnetic response. To this end, we put forward and determine the concepts of duality and breaking of duality symmetry, anti-duality, helicity variation, helicity annhiliation and the breaking of helicity annihilation. Different classes, such as chiral and dual scatterers, are illustrated in this analysis with model examples of spherical and non-spherical shape. As for spheres, these concepts are analysed by considering non-Rayleigh dipolar dielectric particles of high refractive index, which, having a strong magnetic response to the incident wavefield, offer an excellent laboratory to test and interpret such changes in the chirality of the illumination. In addition, comparisons with existing experimental data are made.
73 schema:genre research_article
74 schema:inLanguage en
75 schema:isAccessibleForFree true
76 schema:isPartOf N61016372db2f44d9804a95faf7e479c1
77 Nbf80655b2f0e4a21b5e604c6858709f5
78 sg:journal.1045337
79 schema:name Optical Chirality of Time-Harmonic Wavefields for Classification of Scatterers
80 schema:pagination 9416
81 schema:productId N57644b5061f444c9b0f8ed8db581305e
82 N5fe28fd9000441c8911bb8ca206df59d
83 N70e41fa121f8412b9bf374da2805e393
84 Nad7392b0302e4b2fb9e32031216f62e7
85 Nb10fb221587e479a9108b63f653b84dd
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104611853
87 https://doi.org/10.1038/s41598-018-27496-w
88 schema:sdDatePublished 2019-04-10T21:00
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N431b4becca6c4e10831f561de2eb040c
91 schema:url https://www.nature.com/articles/s41598-018-27496-w
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N431b4becca6c4e10831f561de2eb040c schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N57644b5061f444c9b0f8ed8db581305e schema:name readcube_id
98 schema:value 5eaeed30668ee7238bdec56ae872baf38611f7c790df04d19db127daba6b971a
99 rdf:type schema:PropertyValue
100 N5fe28fd9000441c8911bb8ca206df59d schema:name dimensions_id
101 schema:value pub.1104611853
102 rdf:type schema:PropertyValue
103 N61016372db2f44d9804a95faf7e479c1 schema:volumeNumber 8
104 rdf:type schema:PublicationVolume
105 N68ebba9b1c6b4289813c76956707b75c rdf:first sg:person.01217074277.45
106 rdf:rest rdf:nil
107 N70e41fa121f8412b9bf374da2805e393 schema:name pubmed_id
108 schema:value 29925847
109 rdf:type schema:PropertyValue
110 N7bbe57cd31224825a6bee6e0cf161fb4 rdf:first sg:person.010066336773.36
111 rdf:rest N68ebba9b1c6b4289813c76956707b75c
112 Nad7392b0302e4b2fb9e32031216f62e7 schema:name doi
113 schema:value 10.1038/s41598-018-27496-w
114 rdf:type schema:PropertyValue
115 Nb10fb221587e479a9108b63f653b84dd schema:name nlm_unique_id
116 schema:value 101563288
117 rdf:type schema:PropertyValue
118 Nbf80655b2f0e4a21b5e604c6858709f5 schema:issueNumber 1
119 rdf:type schema:PublicationIssue
120 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Sciences
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
124 schema:name Other Physical Sciences
125 rdf:type schema:DefinedTerm
126 sg:journal.1045337 schema:issn 2045-2322
127 schema:name Scientific Reports
128 rdf:type schema:Periodical
129 sg:person.010066336773.36 schema:affiliation https://www.grid.ac/institutes/grid.425649.8
130 schema:familyName Gutsche
131 schema:givenName Philipp
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010066336773.36
133 rdf:type schema:Person
134 sg:person.01217074277.45 schema:affiliation https://www.grid.ac/institutes/grid.452504.2
135 schema:familyName Nieto-Vesperinas
136 schema:givenName Manuel
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217074277.45
138 rdf:type schema:Person
139 sg:pub.10.1038/lsa.2014.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040084391
140 https://doi.org/10.1038/lsa.2014.64
141 rdf:type schema:CreativeWork
142 sg:pub.10.1038/ncomms2167 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005266489
143 https://doi.org/10.1038/ncomms2167
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ncomms2538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035638022
146 https://doi.org/10.1038/ncomms2538
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/nphoton.2015.200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039969955
149 https://doi.org/10.1038/nphoton.2015.200
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nphoton.2015.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027063897
152 https://doi.org/10.1038/nphoton.2015.201
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/srep00492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033154337
155 https://doi.org/10.1038/srep00492
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/srep08207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027908545
158 https://doi.org/10.1038/srep08207
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/srep23186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024097840
161 https://doi.org/10.1038/srep23186
162 rdf:type schema:CreativeWork
163 https://app.dimensions.ai/details/publication/pub.1108429520 schema:CreativeWork
164 https://doi.org/10.1016/j.cplett.2015.02.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051763188
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0079-6638(08)70391-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005998450
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1017/cbo9780511795213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108467033
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/acs.nanolett.8b00083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101507152
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/acsphotonics.6b00147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138935
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/acsphotonics.6b00201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055138949
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/acsphotonics.6b00887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083827123
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/cr60295a004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053961308
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/cr60310a001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053898246
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/nl4005018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219964
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/nl501032j schema:sameAs https://app.dimensions.ai/details/publication/pub.1049765371
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/nn402736f schema:sameAs https://app.dimensions.ai/details/publication/pub.1056225382
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/ph500419a schema:sameAs https://app.dimensions.ai/details/publication/pub.1056290074
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1039/c5nr08527f schema:sameAs https://app.dimensions.ai/details/publication/pub.1000740523
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1039/c6nr00676k schema:sameAs https://app.dimensions.ai/details/publication/pub.1049937672
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1063/1.1704165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057774107
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/1367-2630/14/12/123009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016139644
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/1367-2630/14/5/053050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059135754
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1088/1367-2630/18/3/033012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059137333
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1088/2040-8978/17/10/105612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059180534
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1088/2040-8978/18/10/103001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059180908
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1088/2040-8986/aa6528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084176294
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1098/rsta.2016.0314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083851847
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreva.83.021803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042534609
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physreva.87.012504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041659598
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physreva.92.023813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060513967
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physrevb.82.045404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060633271
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevb.83.165426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060635494
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevb.87.235409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044807169
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevb.88.085111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010513245
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevb.91.245108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060646239
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.104.083903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756642
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.104.163901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052250269
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.111.060401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048254389
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.113.033601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031680703
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevx.2.031010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018938388
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevx.6.031013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005544508
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1117/1.3603941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051578381
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1117/12.2025141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031157500
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1117/12.2209551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026194445
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/sciadv.1602735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085432380
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1152697 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457290
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1202817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050252085
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.aaa9519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018493732
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1126/science.aag2472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062668357
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1142/5833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098835742
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1364/josa.73.000765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065156292
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1364/josaa.28.000054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065162972
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1364/ls.2015.lm1h.2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098982004
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1364/oe.19.004815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065196049
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1364/oe.20.024444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065201680
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1364/oe.23.031230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032349208
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1364/oe.23.031874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037271350
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1364/ol.38.001857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065233834
271 rdf:type schema:CreativeWork
272 https://doi.org/10.3390/ma11020213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100734399
273 rdf:type schema:CreativeWork
274 https://doi.org/10.3390/photonics3040060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892253
275 rdf:type schema:CreativeWork
276 https://doi.org/10.3762/bjnano.8.66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084440779
277 rdf:type schema:CreativeWork
278 https://www.grid.ac/institutes/grid.425649.8 schema:alternateName Zuse Institute Berlin
279 schema:name Freie Universität Berlin, Mathematics Institute, 14195 Berlin, Germany
280 Zuse Institute Berlin, Computational Nano Optics, 14195 Berlin, Germany
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.452504.2 schema:alternateName Instituto de Ciencia de Materiales de Madrid
283 schema:name Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049, Madrid, Spain
284 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...