Highly-efficient three-dimensional waveguide couplers using impedance-tunable transformation optics View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Jun Cao, Fenghua Qi, Senlin Yan, Lifa Zhang

ABSTRACT

There is growing interest in designing waveguide couplers with low reflections. Using impedance-tunable transformation optics, we propose a coordinate transformation technique in the design of compact three-dimensional waveguide couplers. To transmit electromagnetic waves between two coaxial waveguides with different inner and outer radii in the microwave range, a suitable impedance function is derived to reduce the impedance mismatch at the boundary, which make the fabrication process being simplified due to the reduced set of transformation media(dielectric response materials only). A larger refractive index is set to raise the coupling performance in the low frequency range. Next we apply impedance-tunable transformation optics to the design of dielectric waveguide couplers, where only the core region be contained in the transformed space; by selecting a tunable impedance function, waves can transmit efficiently through waveguides with quite different cross sections and background media. The proposed impedance-tunable three-dimensional waveguide couplers are confirmed by the 3-dimensional numerical simulation with good performances, which can have potential applications in fiber-to-chip coupling. More... »

PAGES

9091

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-27300-9

DOI

http://dx.doi.org/10.1038/s41598-018-27300-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104478502

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29904076


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, 210023, Nanjing, China", 
            "Department of Electronics Engineering, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Jun", 
        "id": "sg:person.016434706151.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434706151.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Department of Electronics Engineering, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qi", 
        "givenName": "Fenghua", 
        "id": "sg:person.011575254242.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575254242.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Xiaozhuang University", 
          "id": "https://www.grid.ac/institutes/grid.440845.9", 
          "name": [
            "Department of Electronics Engineering, Nanjing Xiaozhuang University, 211171, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Senlin", 
        "id": "sg:person.014034542067.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034542067.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Normal University", 
          "id": "https://www.grid.ac/institutes/grid.260474.3", 
          "name": [
            "Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, 210023, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lifa", 
        "id": "sg:person.01053524423.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053524423.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat3901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004430550", 
          "https://doi.org/10.1038/nmat3901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1125907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008055728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.photonics.2007.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016592677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.195901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017404600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.195901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017404600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4874623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019065681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1133628", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019262685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.253902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020827884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.253902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020827884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2012.38", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021629687", 
          "https://doi.org/10.1038/lsa.2012.38"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022099245", 
          "https://doi.org/10.1038/srep24529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1126493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022407493"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/9/3/045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030964952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.123002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031862886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.123002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031862886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.16.018545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033921022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.063903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034041255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.063903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034041255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep18223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034618878", 
          "https://doi.org/10.1038/srep18223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep32915", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034840444", 
          "https://doi.org/10.1038/srep32915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.220404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035403185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.220404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035403185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep24495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037515723", 
          "https://doi.org/10.1038/srep24495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2748302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049059353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2016.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052378352", 
          "https://doi.org/10.1038/nphoton.2016.184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep40941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053876881", 
          "https://doi.org/10.1038/srep40941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2803315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057868733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2949272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057886484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3304791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057934131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3383057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057944697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4824280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058084427"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.195503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.115.195503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060764410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.45.6071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063077318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.53.007831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065131149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.000767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065192365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.000767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065192365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.020305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.020305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065194616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.016821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065197562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.20.014705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065200630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.005688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065202996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.010886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065203702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.33.000896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225967"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "There is growing interest in designing waveguide couplers with low reflections. Using impedance-tunable transformation optics, we propose a coordinate transformation technique in the design of compact three-dimensional waveguide couplers. To transmit electromagnetic waves between two coaxial waveguides with different inner and outer radii in the microwave range, a suitable impedance function is derived to reduce the impedance mismatch at the boundary, which make the fabrication process being simplified due to the reduced set of transformation media(dielectric response materials only). A larger refractive index is set to raise the coupling performance in the low frequency range. Next we apply impedance-tunable transformation optics to the design of dielectric waveguide couplers, where only the core region be contained in the transformed space; by selecting a tunable impedance function, waves can transmit efficiently through waveguides with quite different cross sections and background media. The proposed impedance-tunable three-dimensional waveguide couplers are confirmed by the 3-dimensional numerical simulation with good performances, which can have potential applications in fiber-to-chip coupling.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-27300-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Highly-efficient three-dimensional waveguide couplers using impedance-tunable transformation optics", 
    "pagination": "9091", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9072da776899d25ccd9f888ba9dc619b2135ad24e9f6b86af2f580361391070f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29904076"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-27300-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104478502"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-27300-9", 
      "https://app.dimensions.ai/details/publication/pub.1104478502"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-27300-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27300-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27300-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27300-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27300-9'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      21 PREDICATES      65 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-27300-9 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nba7599faf11c4b219c4ed8b333a0fc29
4 schema:citation sg:pub.10.1038/lsa.2012.38
5 sg:pub.10.1038/nmat3901
6 sg:pub.10.1038/nphoton.2016.184
7 sg:pub.10.1038/srep18223
8 sg:pub.10.1038/srep24495
9 sg:pub.10.1038/srep24529
10 sg:pub.10.1038/srep32915
11 sg:pub.10.1038/srep40941
12 https://doi.org/10.1016/j.photonics.2007.07.013
13 https://doi.org/10.1063/1.2748302
14 https://doi.org/10.1063/1.2803315
15 https://doi.org/10.1063/1.2949272
16 https://doi.org/10.1063/1.3304791
17 https://doi.org/10.1063/1.3383057
18 https://doi.org/10.1063/1.4824280
19 https://doi.org/10.1063/1.4874623
20 https://doi.org/10.1088/1367-2630/9/3/045
21 https://doi.org/10.1103/physrevlett.100.063903
22 https://doi.org/10.1103/physrevlett.100.123002
23 https://doi.org/10.1103/physrevlett.101.220404
24 https://doi.org/10.1103/physrevlett.102.253902
25 https://doi.org/10.1103/physrevlett.110.195901
26 https://doi.org/10.1103/physrevlett.115.195503
27 https://doi.org/10.1126/science.1125907
28 https://doi.org/10.1126/science.1126493
29 https://doi.org/10.1126/science.1133628
30 https://doi.org/10.1143/jjap.45.6071
31 https://doi.org/10.1364/ao.53.007831
32 https://doi.org/10.1364/oe.16.018545
33 https://doi.org/10.1364/oe.18.000767
34 https://doi.org/10.1364/oe.18.020305
35 https://doi.org/10.1364/oe.19.016821
36 https://doi.org/10.1364/oe.20.014705
37 https://doi.org/10.1364/oe.21.005688
38 https://doi.org/10.1364/oe.21.010886
39 https://doi.org/10.1364/ol.33.000896
40 schema:datePublished 2018-12
41 schema:datePublishedReg 2018-12-01
42 schema:description There is growing interest in designing waveguide couplers with low reflections. Using impedance-tunable transformation optics, we propose a coordinate transformation technique in the design of compact three-dimensional waveguide couplers. To transmit electromagnetic waves between two coaxial waveguides with different inner and outer radii in the microwave range, a suitable impedance function is derived to reduce the impedance mismatch at the boundary, which make the fabrication process being simplified due to the reduced set of transformation media(dielectric response materials only). A larger refractive index is set to raise the coupling performance in the low frequency range. Next we apply impedance-tunable transformation optics to the design of dielectric waveguide couplers, where only the core region be contained in the transformed space; by selecting a tunable impedance function, waves can transmit efficiently through waveguides with quite different cross sections and background media. The proposed impedance-tunable three-dimensional waveguide couplers are confirmed by the 3-dimensional numerical simulation with good performances, which can have potential applications in fiber-to-chip coupling.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf Neaf2d6c1d1f84d1a9011054da0990037
47 Nf5751ee1f5044685b884351cd3017a52
48 sg:journal.1045337
49 schema:name Highly-efficient three-dimensional waveguide couplers using impedance-tunable transformation optics
50 schema:pagination 9091
51 schema:productId N25fecf9ed1b947fe8c37837cfcefc075
52 N6ba29765b15b44ea8cf7073bdb2e3459
53 N6df5ca69732d44ac90124e70f0be6989
54 N7f1d85bd9a0549c091cdd4d603b7d4db
55 Nb5f92c9363b4419bb6fb0b6a8be9087e
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104478502
57 https://doi.org/10.1038/s41598-018-27300-9
58 schema:sdDatePublished 2019-04-10T20:06
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N6ea77b693144431da076df3e889641ce
61 schema:url https://www.nature.com/articles/s41598-018-27300-9
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N0d1994e709604107bd544dc915443563 rdf:first sg:person.014034542067.82
66 rdf:rest N43f179265ccb48648174a3254452cc81
67 N25fecf9ed1b947fe8c37837cfcefc075 schema:name pubmed_id
68 schema:value 29904076
69 rdf:type schema:PropertyValue
70 N43f179265ccb48648174a3254452cc81 rdf:first sg:person.01053524423.51
71 rdf:rest rdf:nil
72 N673d897e875a46679ccd3248bef4f415 rdf:first sg:person.011575254242.50
73 rdf:rest N0d1994e709604107bd544dc915443563
74 N6ba29765b15b44ea8cf7073bdb2e3459 schema:name dimensions_id
75 schema:value pub.1104478502
76 rdf:type schema:PropertyValue
77 N6df5ca69732d44ac90124e70f0be6989 schema:name doi
78 schema:value 10.1038/s41598-018-27300-9
79 rdf:type schema:PropertyValue
80 N6ea77b693144431da076df3e889641ce schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 N7f1d85bd9a0549c091cdd4d603b7d4db schema:name nlm_unique_id
83 schema:value 101563288
84 rdf:type schema:PropertyValue
85 Nb5f92c9363b4419bb6fb0b6a8be9087e schema:name readcube_id
86 schema:value 9072da776899d25ccd9f888ba9dc619b2135ad24e9f6b86af2f580361391070f
87 rdf:type schema:PropertyValue
88 Nba7599faf11c4b219c4ed8b333a0fc29 rdf:first sg:person.016434706151.70
89 rdf:rest N673d897e875a46679ccd3248bef4f415
90 Neaf2d6c1d1f84d1a9011054da0990037 schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 Nf5751ee1f5044685b884351cd3017a52 schema:volumeNumber 8
93 rdf:type schema:PublicationVolume
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
98 schema:name Other Physical Sciences
99 rdf:type schema:DefinedTerm
100 sg:journal.1045337 schema:issn 2045-2322
101 schema:name Scientific Reports
102 rdf:type schema:Periodical
103 sg:person.01053524423.51 schema:affiliation https://www.grid.ac/institutes/grid.260474.3
104 schema:familyName Zhang
105 schema:givenName Lifa
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053524423.51
107 rdf:type schema:Person
108 sg:person.011575254242.50 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
109 schema:familyName Qi
110 schema:givenName Fenghua
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011575254242.50
112 rdf:type schema:Person
113 sg:person.014034542067.82 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
114 schema:familyName Yan
115 schema:givenName Senlin
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014034542067.82
117 rdf:type schema:Person
118 sg:person.016434706151.70 schema:affiliation https://www.grid.ac/institutes/grid.440845.9
119 schema:familyName Cao
120 schema:givenName Jun
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016434706151.70
122 rdf:type schema:Person
123 sg:pub.10.1038/lsa.2012.38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021629687
124 https://doi.org/10.1038/lsa.2012.38
125 rdf:type schema:CreativeWork
126 sg:pub.10.1038/nmat3901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004430550
127 https://doi.org/10.1038/nmat3901
128 rdf:type schema:CreativeWork
129 sg:pub.10.1038/nphoton.2016.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052378352
130 https://doi.org/10.1038/nphoton.2016.184
131 rdf:type schema:CreativeWork
132 sg:pub.10.1038/srep18223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034618878
133 https://doi.org/10.1038/srep18223
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/srep24495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037515723
136 https://doi.org/10.1038/srep24495
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/srep24529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022099245
139 https://doi.org/10.1038/srep24529
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/srep32915 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034840444
142 https://doi.org/10.1038/srep32915
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/srep40941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053876881
145 https://doi.org/10.1038/srep40941
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.photonics.2007.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016592677
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.2748302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049059353
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1063/1.2803315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057868733
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1063/1.2949272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057886484
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.3304791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057934131
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1063/1.3383057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057944697
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1063/1.4824280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058084427
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1063/1.4874623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019065681
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1088/1367-2630/9/3/045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030964952
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.100.063903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034041255
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.100.123002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031862886
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.101.220404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035403185
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.102.253902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020827884
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.110.195901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017404600
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.115.195503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060764410
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1126/science.1125907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008055728
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1126/science.1126493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022407493
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1126/science.1133628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019262685
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1143/jjap.45.6071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063077318
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1364/ao.53.007831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065131149
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1364/oe.16.018545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033921022
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1364/oe.18.000767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065192365
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1364/oe.18.020305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065194616
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1364/oe.19.016821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065197562
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1364/oe.20.014705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065200630
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1364/oe.21.005688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065202996
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1364/oe.21.010886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065203702
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1364/ol.33.000896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225967
202 rdf:type schema:CreativeWork
203 https://www.grid.ac/institutes/grid.260474.3 schema:alternateName Nanjing Normal University
204 schema:name Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, 210023, Nanjing, China
205 rdf:type schema:Organization
206 https://www.grid.ac/institutes/grid.440845.9 schema:alternateName Nanjing Xiaozhuang University
207 schema:name Department of Electronics Engineering, Nanjing Xiaozhuang University, 211171, Nanjing, China
208 Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, 210023, Nanjing, China
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...