Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Boyuan Mu, Min Li

ABSTRACT

In this study, tetradecanol/graphene aerogel form-stable composite phase change materials were prepared by physical absorption. Two kinds of graphene aerogels were prepared using vitamin C and ethylenediamine to enhance the thermal conductivity of tetradecanol and prevent its leakage during phase transition. The form-stable composite phase change material exhibited excellent thermal energy storage capacity. The latent heat of the tetradecanol/graphene aerogel composite phase change materials with 5 wt.% graphene aerogel was similar to the theoretical latent heat of pure tetradecanol. The thermal conductivity of the tetradecanol/graphene aerogel composite phase change material improved gradually as the graphene aerogel content increased. The prepared tetradecanol/graphene aerogel composite phase change materials exhibited good thermal reliability and thermal stability, and no chemical reaction occurred between tetradecanol and the graphene aerogel. In addition, the latent heat and thermal conductivity of the tetradecanol/ethylenediamine-graphene aerogel composites were higher than those of tetradecanol/vitamin C-graphene aerogel composites, and the flexible shape of the ethylenediamine-graphene aerogel is suitable for application of the tetradecanol/ethylenediamine-graphene aerogel composite. More... »

PAGES

8878

References to SciGraph publications

  • 2008-02. Processable aqueous dispersions of graphene nanosheets in NATURE NANOTECHNOLOGY
  • 1995-01. Place of DSC purity analysis in pharmaceutical development in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/s41598-018-27038-4

    DOI

    http://dx.doi.org/10.1038/s41598-018-27038-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104412598

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29891967


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "Jiangsu Key Laboratory for Construction Materials, Southeast University, 211189, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mu", 
            "givenName": "Boyuan", 
            "id": "sg:person.011551646754.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551646754.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Southeast University", 
              "id": "https://www.grid.ac/institutes/grid.263826.b", 
              "name": [
                "Jiangsu Key Laboratory for Construction Materials, Southeast University, 211189, Nanjing, China", 
                "International Institute for Urban System Engineering, Southeast University, 210096, Nanjing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Min", 
            "id": "sg:person.010622141733.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622141733.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.energy.2012.01.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001623603"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2015.08.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003952315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006570009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2016.10.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007462883"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c6ta07587h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007597872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c5nj03086b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009882445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2016.04.084", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010700251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2016.01.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010848598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013198528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2012.05.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013541057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2016.07.197", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014657498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2011.01.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014822135"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2016.09.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015195099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.rser.2007.10.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015208798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2013.01.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016001204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cplett.2015.01.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020133707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solener.2016.12.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021696349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.conbuildmat.2016.05.091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024033852"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.451", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025138385", 
              "https://doi.org/10.1038/nnano.2007.451"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2014.04.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027049833"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.applthermaleng.2006.11.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027968054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.201204530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028353939"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2013.04.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030368604"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2016.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030766619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.carbon.2015.03.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032247234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2013.01.046", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035197693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3ta14725h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036317428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2013.03.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037348167"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.compositesa.2016.04.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039044781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2012.03.058", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039274719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2014.09.077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040672888"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02547150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041029469", 
              "https://doi.org/10.1007/bf02547150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02547150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041029469", 
              "https://doi.org/10.1007/bf02547150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tca.2012.04.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051828716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2014.11.039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051933442"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.iecr.6b00073", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055091339"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja01539a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055805656"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1794370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057822643"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.59.2141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060723464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.59.2141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060723464"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.156101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.156101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060755204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jcis.2017.01.071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083699765"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2017.02.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083867864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.enconman.2017.05.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085578655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.solmat.2017.08.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091408341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.apenergy.2017.10.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092185289"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099631973"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "In this study, tetradecanol/graphene aerogel form-stable composite phase change materials were prepared by physical absorption. Two kinds of graphene aerogels were prepared using vitamin C and ethylenediamine to enhance the thermal conductivity of tetradecanol and prevent its leakage during phase transition. The form-stable composite phase change material exhibited excellent thermal energy storage capacity. The latent heat of the tetradecanol/graphene aerogel composite phase change materials with 5 wt.% graphene aerogel was similar to the theoretical latent heat of pure tetradecanol. The thermal conductivity of the tetradecanol/graphene aerogel composite phase change material improved gradually as the graphene aerogel content increased. The prepared tetradecanol/graphene aerogel composite phase change materials exhibited good thermal reliability and thermal stability, and no chemical reaction occurred between tetradecanol and the graphene aerogel. In addition, the latent heat and thermal conductivity of the tetradecanol/ethylenediamine-graphene aerogel composites were higher than those of tetradecanol/vitamin C-graphene aerogel composites, and the flexible shape of the ethylenediamine-graphene aerogel is suitable for application of the tetradecanol/ethylenediamine-graphene aerogel composite.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/s41598-018-27038-4", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7015746", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1045337", 
            "issn": [
              "2045-2322"
            ], 
            "name": "Scientific Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "8"
          }
        ], 
        "name": "Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials", 
        "pagination": "8878", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "26f353b3e96c4af13f998399ef754c49fdb4b1fc4739b7c20c4352329c06d3d4"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29891967"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101563288"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/s41598-018-27038-4"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104412598"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/s41598-018-27038-4", 
          "https://app.dimensions.ai/details/publication/pub.1104412598"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:00", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000571.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/s41598-018-27038-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27038-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27038-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27038-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-27038-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    215 TRIPLES      21 PREDICATES      74 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/s41598-018-27038-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N16457aacbd2249bb9fad59ceb249f26d
    4 schema:citation sg:pub.10.1007/bf02547150
    5 sg:pub.10.1038/nnano.2007.451
    6 https://doi.org/10.1002/adma.201204530
    7 https://doi.org/10.1016/j.apenergy.2012.03.058
    8 https://doi.org/10.1016/j.apenergy.2013.01.071
    9 https://doi.org/10.1016/j.apenergy.2013.04.050
    10 https://doi.org/10.1016/j.apenergy.2015.08.019
    11 https://doi.org/10.1016/j.apenergy.2016.04.084
    12 https://doi.org/10.1016/j.apenergy.2017.10.030
    13 https://doi.org/10.1016/j.applthermaleng.2006.11.004
    14 https://doi.org/10.1016/j.applthermaleng.2016.07.197
    15 https://doi.org/10.1016/j.applthermaleng.2016.09.129
    16 https://doi.org/10.1016/j.carbon.2015.03.009
    17 https://doi.org/10.1016/j.carbon.2016.01.038
    18 https://doi.org/10.1016/j.compositesa.2016.04.024
    19 https://doi.org/10.1016/j.conbuildmat.2016.05.091
    20 https://doi.org/10.1016/j.cplett.2015.01.034
    21 https://doi.org/10.1016/j.enconman.2014.09.077
    22 https://doi.org/10.1016/j.enconman.2017.02.022
    23 https://doi.org/10.1016/j.enconman.2017.05.037
    24 https://doi.org/10.1016/j.energy.2012.01.024
    25 https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.017
    26 https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.049
    27 https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.024
    28 https://doi.org/10.1016/j.jcis.2017.01.071
    29 https://doi.org/10.1016/j.rser.2007.10.005
    30 https://doi.org/10.1016/j.solener.2016.12.027
    31 https://doi.org/10.1016/j.solmat.2011.01.022
    32 https://doi.org/10.1016/j.solmat.2012.05.031
    33 https://doi.org/10.1016/j.solmat.2013.01.046
    34 https://doi.org/10.1016/j.solmat.2013.03.006
    35 https://doi.org/10.1016/j.solmat.2014.04.015
    36 https://doi.org/10.1016/j.solmat.2014.11.039
    37 https://doi.org/10.1016/j.solmat.2016.06.003
    38 https://doi.org/10.1016/j.solmat.2016.10.026
    39 https://doi.org/10.1016/j.solmat.2017.08.025
    40 https://doi.org/10.1016/j.tca.2012.04.013
    41 https://doi.org/10.1021/acs.iecr.6b00073
    42 https://doi.org/10.1021/ja01539a017
    43 https://doi.org/10.1039/c3ta14725h
    44 https://doi.org/10.1039/c5nj03086b
    45 https://doi.org/10.1039/c6ta07587h
    46 https://doi.org/10.1063/1.1794370
    47 https://doi.org/10.1103/physreve.59.2141
    48 https://doi.org/10.1103/physrevlett.102.156101
    49 schema:datePublished 2018-12
    50 schema:datePublishedReg 2018-12-01
    51 schema:description In this study, tetradecanol/graphene aerogel form-stable composite phase change materials were prepared by physical absorption. Two kinds of graphene aerogels were prepared using vitamin C and ethylenediamine to enhance the thermal conductivity of tetradecanol and prevent its leakage during phase transition. The form-stable composite phase change material exhibited excellent thermal energy storage capacity. The latent heat of the tetradecanol/graphene aerogel composite phase change materials with 5 wt.% graphene aerogel was similar to the theoretical latent heat of pure tetradecanol. The thermal conductivity of the tetradecanol/graphene aerogel composite phase change material improved gradually as the graphene aerogel content increased. The prepared tetradecanol/graphene aerogel composite phase change materials exhibited good thermal reliability and thermal stability, and no chemical reaction occurred between tetradecanol and the graphene aerogel. In addition, the latent heat and thermal conductivity of the tetradecanol/ethylenediamine-graphene aerogel composites were higher than those of tetradecanol/vitamin C-graphene aerogel composites, and the flexible shape of the ethylenediamine-graphene aerogel is suitable for application of the tetradecanol/ethylenediamine-graphene aerogel composite.
    52 schema:genre research_article
    53 schema:inLanguage en
    54 schema:isAccessibleForFree true
    55 schema:isPartOf N07bc972e68bc4e68ad913ac5d106363b
    56 Nd449a7291be841439702bccb6b0c4377
    57 sg:journal.1045337
    58 schema:name Fabrication and thermal properties of tetradecanol/graphene aerogel form-stable composite phase change materials
    59 schema:pagination 8878
    60 schema:productId N1e6bccb2e75e43f889ff886fd1a59080
    61 N251b1841ce7e449e8f00909183b06fc9
    62 N54420464bc734194a5b5e66d7d11ee64
    63 N91fb3e4a5a2a4b14b25ba1b471a161b9
    64 Nced1ae2bf2af4f5eb5210ec635749054
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104412598
    66 https://doi.org/10.1038/s41598-018-27038-4
    67 schema:sdDatePublished 2019-04-10T16:00
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher Nbf6aeffcbfe542ac95c6d8b4a18c9fab
    70 schema:url https://www.nature.com/articles/s41598-018-27038-4
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N07bc972e68bc4e68ad913ac5d106363b schema:volumeNumber 8
    75 rdf:type schema:PublicationVolume
    76 N151db68371314afbb897943f04592367 rdf:first sg:person.010622141733.51
    77 rdf:rest rdf:nil
    78 N16457aacbd2249bb9fad59ceb249f26d rdf:first sg:person.011551646754.49
    79 rdf:rest N151db68371314afbb897943f04592367
    80 N1e6bccb2e75e43f889ff886fd1a59080 schema:name pubmed_id
    81 schema:value 29891967
    82 rdf:type schema:PropertyValue
    83 N251b1841ce7e449e8f00909183b06fc9 schema:name readcube_id
    84 schema:value 26f353b3e96c4af13f998399ef754c49fdb4b1fc4739b7c20c4352329c06d3d4
    85 rdf:type schema:PropertyValue
    86 N54420464bc734194a5b5e66d7d11ee64 schema:name dimensions_id
    87 schema:value pub.1104412598
    88 rdf:type schema:PropertyValue
    89 N91fb3e4a5a2a4b14b25ba1b471a161b9 schema:name nlm_unique_id
    90 schema:value 101563288
    91 rdf:type schema:PropertyValue
    92 Nbf6aeffcbfe542ac95c6d8b4a18c9fab schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Nced1ae2bf2af4f5eb5210ec635749054 schema:name doi
    95 schema:value 10.1038/s41598-018-27038-4
    96 rdf:type schema:PropertyValue
    97 Nd449a7291be841439702bccb6b0c4377 schema:issueNumber 1
    98 rdf:type schema:PublicationIssue
    99 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Engineering
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Materials Engineering
    104 rdf:type schema:DefinedTerm
    105 sg:grant.7015746 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-27038-4
    106 rdf:type schema:MonetaryGrant
    107 sg:journal.1045337 schema:issn 2045-2322
    108 schema:name Scientific Reports
    109 rdf:type schema:Periodical
    110 sg:person.010622141733.51 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    111 schema:familyName Li
    112 schema:givenName Min
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010622141733.51
    114 rdf:type schema:Person
    115 sg:person.011551646754.49 schema:affiliation https://www.grid.ac/institutes/grid.263826.b
    116 schema:familyName Mu
    117 schema:givenName Boyuan
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551646754.49
    119 rdf:type schema:Person
    120 sg:pub.10.1007/bf02547150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041029469
    121 https://doi.org/10.1007/bf02547150
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1038/nnano.2007.451 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025138385
    124 https://doi.org/10.1038/nnano.2007.451
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1002/adma.201204530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028353939
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.apenergy.2012.03.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039274719
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.apenergy.2013.01.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016001204
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1016/j.apenergy.2013.04.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030368604
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1016/j.apenergy.2015.08.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003952315
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1016/j.apenergy.2016.04.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010700251
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.apenergy.2017.10.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092185289
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.applthermaleng.2006.11.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027968054
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.applthermaleng.2016.07.197 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014657498
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.applthermaleng.2016.09.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015195099
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.carbon.2015.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032247234
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.carbon.2016.01.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010848598
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.compositesa.2016.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039044781
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.conbuildmat.2016.05.091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024033852
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.cplett.2015.01.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020133707
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.enconman.2014.09.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040672888
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.enconman.2017.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083867864
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.enconman.2017.05.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085578655
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.energy.2012.01.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001623603
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006570009
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013198528
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099631973
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.jcis.2017.01.071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083699765
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1016/j.rser.2007.10.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015208798
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1016/j.solener.2016.12.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021696349
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1016/j.solmat.2011.01.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014822135
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1016/j.solmat.2012.05.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013541057
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1016/j.solmat.2013.01.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035197693
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1016/j.solmat.2013.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037348167
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1016/j.solmat.2014.04.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027049833
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1016/j.solmat.2014.11.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051933442
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1016/j.solmat.2016.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030766619
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1016/j.solmat.2016.10.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007462883
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1016/j.solmat.2017.08.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091408341
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1016/j.tca.2012.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051828716
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1021/acs.iecr.6b00073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055091339
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1021/ja01539a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055805656
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1039/c3ta14725h schema:sameAs https://app.dimensions.ai/details/publication/pub.1036317428
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1039/c5nj03086b schema:sameAs https://app.dimensions.ai/details/publication/pub.1009882445
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1039/c6ta07587h schema:sameAs https://app.dimensions.ai/details/publication/pub.1007597872
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1063/1.1794370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057822643
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1103/physreve.59.2141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060723464
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1103/physrevlett.102.156101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755204
    211 rdf:type schema:CreativeWork
    212 https://www.grid.ac/institutes/grid.263826.b schema:alternateName Southeast University
    213 schema:name International Institute for Urban System Engineering, Southeast University, 210096, Nanjing, China
    214 Jiangsu Key Laboratory for Construction Materials, Southeast University, 211189, Nanjing, China
    215 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...