Dynamic Visual Cues for Differentiating Mirror and Glass View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Hideki Tamura, Hiroshi Higashi, Shigeki Nakauchi

ABSTRACT

Mirror materials (perfect specular surfaces such as polished metal) and glass materials (transparent and refraction media) are quite commonly encountered in everyday life. The human visual system can discriminate these complex distorted images formed by reflection or transmission of the surrounding environment even though they do not intrinsically possess surface colour. In this study, we determined the cues that aid mirror and glass discrimination. From video analysis, we found that glass objects have more opposite motion components relative to the direction of object rotation. Then, we hypothesised a model developed using motion transparency because motion information is not only present on the front side, but also on the rear side of the object surface in the glass material object. In materials judging experiments, we found that human performance with rotating video stimuli is higher than that with static stimuli (simple images). Subsequently, we compared the developed model derived from motion coherency to human rating performance for transparency and specular reflection. The model sufficiently identified the different materials using dynamic information. These results suggest that the visual system relies on dynamic cues that indicate the difference between mirror and glass. More... »

PAGES

8403

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-26720-x

DOI

http://dx.doi.org/10.1038/s41598-018-26720-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104216312

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29849082


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Japan Society for the Promotion of Science", 
          "id": "https://www.grid.ac/institutes/grid.54432.34", 
          "name": [
            "Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan", 
            "Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tamura", 
        "givenName": "Hideki", 
        "id": "sg:person.01055463425.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055463425.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Higashi", 
        "givenName": "Hiroshi", 
        "id": "sg:person.0632456404.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632456404.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Toyohashi University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.412804.b", 
          "name": [
            "Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakauchi", 
        "givenName": "Shigeki", 
        "id": "sg:person.01157662301.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157662301.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.visres.2015.05.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001365851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041669516671566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008045004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041669516671566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008045004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/331163a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008478414", 
          "https://doi.org/10.1038/331163a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep35805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009016626", 
          "https://doi.org/10.1038/srep35805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/16.1.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009260939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009403718", 
          "https://doi.org/10.1038/nn1312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn1312", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009403718", 
          "https://doi.org/10.1038/nn1312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/10.9.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009472410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/16.15.12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009654017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/4.9.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010092500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1500913112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010099219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2014.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011160188"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-0277(01)00116-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013139259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041669516685789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014092710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041669516685789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014092710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041669516685789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014092710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2015.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014400384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156856897x00357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015322091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156856897x00357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015322091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015371510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1016211108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015601414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.04.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017972957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2015.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018339032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.1979.0006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/3.5.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018666798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2014.09.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019531949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1451-14.2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022013835"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026306242", 
          "https://doi.org/10.1038/nature05724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026306242", 
          "https://doi.org/10.1038/nature05724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6613(99)01381-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026314914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/10.9.7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026436918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.visres.2014.11.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027201100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2012.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027798099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0952523808080528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029094928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/13.8.9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029260392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156856897x00366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029475452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/156856897x00366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029475452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/33688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030289507", 
          "https://doi.org/10.1038/33688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/33688", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030289507", 
          "https://doi.org/10.1038/33688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0054549", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030752454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/10.9.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033531723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.1095-12.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037362044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.2593-13.2014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037619627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797611408734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040042337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797611408734", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040042337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/13.11.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041627300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2011.10.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046077347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9280.2008.02067.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047464539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9280.2008.02067.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047464539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cub.2015.01.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047963501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/9.11.10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052411744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/344779.344855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052996538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053530030", 
          "https://doi.org/10.1038/630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053530030", 
          "https://doi.org/10.1038/630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/17.1.20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074194827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.22-14-06195.2002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075087401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.11-09-02768.1991", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077728218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.15-02-01195.1995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082543486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.14-12-07357.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082600776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.14-12-07367.1994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082600777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep44274", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084132169", 
          "https://doi.org/10.1038/srep44274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/17.3.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084239079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/17.3.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084239080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/17.6.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085900509"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Mirror materials (perfect specular surfaces such as polished metal) and glass materials (transparent and refraction media) are quite commonly encountered in everyday life. The human visual system can discriminate these complex distorted images formed by reflection or transmission of the surrounding environment even though they do not intrinsically possess surface colour. In this study, we determined the cues that aid mirror and glass discrimination. From video analysis, we found that glass objects have more opposite motion components relative to the direction of object rotation. Then, we hypothesised a model developed using motion transparency because motion information is not only present on the front side, but also on the rear side of the object surface in the glass material object. In materials judging experiments, we found that human performance with rotating video stimuli is higher than that with static stimuli (simple images). Subsequently, we compared the developed model derived from motion coherency to human rating performance for transparency and specular reflection. The model sufficiently identified the different materials using dynamic information. These results suggest that the visual system relies on dynamic cues that indicate the difference between mirror and glass.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/s41598-018-26720-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6536057", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5862209", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "name": "Dynamic Visual Cues for Differentiating Mirror and Glass", 
    "pagination": "8403", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "549b3c51ba03c97887e582cd2ba1309195574fbac38bc9c1e75c34a7fbfe8b03"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29849082"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101563288"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-26720-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104216312"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-26720-x", 
      "https://app.dimensions.ai/details/publication/pub.1104216312"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000571.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/s41598-018-26720-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26720-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26720-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26720-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26720-x'


 

This table displays all metadata directly associated to this object as RDF triples.

259 TRIPLES      21 PREDICATES      83 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-26720-x schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N5c45b2313e7f4acb90b039bbe473bd8b
4 schema:citation sg:pub.10.1038/331163a0
5 sg:pub.10.1038/33688
6 sg:pub.10.1038/630
7 sg:pub.10.1038/nature05724
8 sg:pub.10.1038/nn1312
9 sg:pub.10.1038/srep35805
10 sg:pub.10.1038/srep44274
11 https://doi.org/10.1016/j.cub.2011.10.036
12 https://doi.org/10.1016/j.cub.2012.08.009
13 https://doi.org/10.1016/j.cub.2014.09.074
14 https://doi.org/10.1016/j.cub.2015.01.062
15 https://doi.org/10.1016/j.neuroimage.2011.04.056
16 https://doi.org/10.1016/j.visres.2014.07.003
17 https://doi.org/10.1016/j.visres.2014.11.016
18 https://doi.org/10.1016/j.visres.2014.12.011
19 https://doi.org/10.1016/j.visres.2015.01.008
20 https://doi.org/10.1016/j.visres.2015.01.023
21 https://doi.org/10.1016/j.visres.2015.05.003
22 https://doi.org/10.1016/s0010-0277(01)00116-0
23 https://doi.org/10.1016/s1364-6613(99)01381-9
24 https://doi.org/10.1017/s0952523808080528
25 https://doi.org/10.1073/pnas.1016211108
26 https://doi.org/10.1073/pnas.1500913112
27 https://doi.org/10.1098/rspb.1979.0006
28 https://doi.org/10.1111/j.1467-9280.2008.02067.x
29 https://doi.org/10.1145/344779.344855
30 https://doi.org/10.1163/156856897x00357
31 https://doi.org/10.1163/156856897x00366
32 https://doi.org/10.1167/10.9.15
33 https://doi.org/10.1167/10.9.3
34 https://doi.org/10.1167/10.9.7
35 https://doi.org/10.1167/13.11.8
36 https://doi.org/10.1167/13.8.9
37 https://doi.org/10.1167/16.1.5
38 https://doi.org/10.1167/16.15.12
39 https://doi.org/10.1167/17.1.20
40 https://doi.org/10.1167/17.3.17
41 https://doi.org/10.1167/17.3.18
42 https://doi.org/10.1167/17.6.3
43 https://doi.org/10.1167/3.5.3
44 https://doi.org/10.1167/4.9.10
45 https://doi.org/10.1167/9.11.10
46 https://doi.org/10.1177/0956797611408734
47 https://doi.org/10.1177/2041669516671566
48 https://doi.org/10.1177/2041669516685789
49 https://doi.org/10.1371/journal.pone.0054549
50 https://doi.org/10.1523/jneurosci.1095-12.2012
51 https://doi.org/10.1523/jneurosci.11-09-02768.1991
52 https://doi.org/10.1523/jneurosci.14-12-07357.1994
53 https://doi.org/10.1523/jneurosci.14-12-07367.1994
54 https://doi.org/10.1523/jneurosci.1451-14.2014
55 https://doi.org/10.1523/jneurosci.15-02-01195.1995
56 https://doi.org/10.1523/jneurosci.22-14-06195.2002
57 https://doi.org/10.1523/jneurosci.2593-13.2014
58 schema:datePublished 2018-12
59 schema:datePublishedReg 2018-12-01
60 schema:description Mirror materials (perfect specular surfaces such as polished metal) and glass materials (transparent and refraction media) are quite commonly encountered in everyday life. The human visual system can discriminate these complex distorted images formed by reflection or transmission of the surrounding environment even though they do not intrinsically possess surface colour. In this study, we determined the cues that aid mirror and glass discrimination. From video analysis, we found that glass objects have more opposite motion components relative to the direction of object rotation. Then, we hypothesised a model developed using motion transparency because motion information is not only present on the front side, but also on the rear side of the object surface in the glass material object. In materials judging experiments, we found that human performance with rotating video stimuli is higher than that with static stimuli (simple images). Subsequently, we compared the developed model derived from motion coherency to human rating performance for transparency and specular reflection. The model sufficiently identified the different materials using dynamic information. These results suggest that the visual system relies on dynamic cues that indicate the difference between mirror and glass.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf N182885299241406cbc128fd4fd74a851
65 Nea78b6411a4749fbb2483a30294e4f12
66 sg:journal.1045337
67 schema:name Dynamic Visual Cues for Differentiating Mirror and Glass
68 schema:pagination 8403
69 schema:productId N092a38c73fca4d48ad1ca8ef65d20afb
70 N12d865bc0fd74c958ceeb03269751a76
71 N145b56677c8b4070b1086725d9948f9b
72 N6d05376d58fd4fdcb278a336f140279c
73 Ne9448127e52d4f4da678c8ca2001a2fe
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104216312
75 https://doi.org/10.1038/s41598-018-26720-x
76 schema:sdDatePublished 2019-04-10T20:06
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Ndc7232e4b40f4dedaac802f5cb2699ae
79 schema:url https://www.nature.com/articles/s41598-018-26720-x
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N092a38c73fca4d48ad1ca8ef65d20afb schema:name dimensions_id
84 schema:value pub.1104216312
85 rdf:type schema:PropertyValue
86 N12d865bc0fd74c958ceeb03269751a76 schema:name nlm_unique_id
87 schema:value 101563288
88 rdf:type schema:PropertyValue
89 N145b56677c8b4070b1086725d9948f9b schema:name pubmed_id
90 schema:value 29849082
91 rdf:type schema:PropertyValue
92 N182885299241406cbc128fd4fd74a851 schema:volumeNumber 8
93 rdf:type schema:PublicationVolume
94 N49abecd3fc554db08d47fd6deb7daf14 rdf:first sg:person.0632456404.08
95 rdf:rest Na4b4ea57cebf443e99306f6487930779
96 N5c45b2313e7f4acb90b039bbe473bd8b rdf:first sg:person.01055463425.81
97 rdf:rest N49abecd3fc554db08d47fd6deb7daf14
98 N6d05376d58fd4fdcb278a336f140279c schema:name readcube_id
99 schema:value 549b3c51ba03c97887e582cd2ba1309195574fbac38bc9c1e75c34a7fbfe8b03
100 rdf:type schema:PropertyValue
101 Na4b4ea57cebf443e99306f6487930779 rdf:first sg:person.01157662301.77
102 rdf:rest rdf:nil
103 Ndc7232e4b40f4dedaac802f5cb2699ae schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Ne9448127e52d4f4da678c8ca2001a2fe schema:name doi
106 schema:value 10.1038/s41598-018-26720-x
107 rdf:type schema:PropertyValue
108 Nea78b6411a4749fbb2483a30294e4f12 schema:issueNumber 1
109 rdf:type schema:PublicationIssue
110 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
111 schema:name Psychology and Cognitive Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
114 schema:name Psychology
115 rdf:type schema:DefinedTerm
116 sg:grant.5862209 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-26720-x
117 rdf:type schema:MonetaryGrant
118 sg:grant.6536057 http://pending.schema.org/fundedItem sg:pub.10.1038/s41598-018-26720-x
119 rdf:type schema:MonetaryGrant
120 sg:journal.1045337 schema:issn 2045-2322
121 schema:name Scientific Reports
122 rdf:type schema:Periodical
123 sg:person.01055463425.81 schema:affiliation https://www.grid.ac/institutes/grid.54432.34
124 schema:familyName Tamura
125 schema:givenName Hideki
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01055463425.81
127 rdf:type schema:Person
128 sg:person.01157662301.77 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
129 schema:familyName Nakauchi
130 schema:givenName Shigeki
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157662301.77
132 rdf:type schema:Person
133 sg:person.0632456404.08 schema:affiliation https://www.grid.ac/institutes/grid.412804.b
134 schema:familyName Higashi
135 schema:givenName Hiroshi
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632456404.08
137 rdf:type schema:Person
138 sg:pub.10.1038/331163a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008478414
139 https://doi.org/10.1038/331163a0
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/33688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030289507
142 https://doi.org/10.1038/33688
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053530030
145 https://doi.org/10.1038/630
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature05724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026306242
148 https://doi.org/10.1038/nature05724
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nn1312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009403718
151 https://doi.org/10.1038/nn1312
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/srep35805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009016626
154 https://doi.org/10.1038/srep35805
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/srep44274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084132169
157 https://doi.org/10.1038/srep44274
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.cub.2011.10.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046077347
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.cub.2012.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027798099
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.cub.2014.09.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019531949
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.cub.2015.01.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047963501
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.neuroimage.2011.04.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017972957
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.visres.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015371510
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.visres.2014.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027201100
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.visres.2014.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011160188
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.visres.2015.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018339032
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.visres.2015.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014400384
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.visres.2015.05.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001365851
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0010-0277(01)00116-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013139259
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s1364-6613(99)01381-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026314914
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1017/s0952523808080528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029094928
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1073/pnas.1016211108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015601414
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1073/pnas.1500913112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010099219
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1098/rspb.1979.0006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411884
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/j.1467-9280.2008.02067.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1047464539
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1145/344779.344855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052996538
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1163/156856897x00357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015322091
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1163/156856897x00366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029475452
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1167/10.9.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033531723
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1167/10.9.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009472410
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1167/10.9.7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026436918
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1167/13.11.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041627300
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1167/13.8.9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029260392
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1167/16.1.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009260939
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1167/16.15.12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009654017
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1167/17.1.20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074194827
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1167/17.3.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084239079
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1167/17.3.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084239080
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1167/17.6.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085900509
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1167/3.5.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018666798
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1167/4.9.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010092500
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1167/9.11.10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052411744
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1177/0956797611408734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040042337
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1177/2041669516671566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008045004
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1177/2041669516685789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014092710
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1371/journal.pone.0054549 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030752454
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1523/jneurosci.1095-12.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037362044
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1523/jneurosci.11-09-02768.1991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077728218
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1523/jneurosci.14-12-07357.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082600776
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1523/jneurosci.14-12-07367.1994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082600777
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1523/jneurosci.1451-14.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022013835
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1523/jneurosci.15-02-01195.1995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082543486
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1523/jneurosci.22-14-06195.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075087401
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1523/jneurosci.2593-13.2014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037619627
252 rdf:type schema:CreativeWork
253 https://www.grid.ac/institutes/grid.412804.b schema:alternateName Toyohashi University of Technology
254 schema:name Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
255 rdf:type schema:Organization
256 https://www.grid.ac/institutes/grid.54432.34 schema:alternateName Japan Society for the Promotion of Science
257 schema:name Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
258 Japan Society for the Promotion of Science, Chiyoda, Tokyo, Japan
259 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...