The relationship between metabolic syndrome and asthma in the elderly View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-20

AUTHORS

Sangshin Park, Nam-Kyong Choi, Seungsoo Kim, Chang-Hoon Lee

ABSTRACT

The burden of asthma in the elderly is increasing, but the etiology of asthma in the elderly is not clearly understood. Recent studies have reported the epidemiological link between metabolic syndrome (MS) and asthma, but it has rarely been studied in the elderly. This study investigated the association between MS and asthma and the contribution of insulin resistance (IR) and systemic inflammation to this MS-asthma association in the elderly. Our study analyzed 4,060 elderly participants (≥65 years old) from a cross-sectional survey, the Korean National Health and Nutritional Examination Survey 2007–2012. Mediation analyses were performed to examine whether IR and systemic inflammation mediates the MS-asthma association. Participants with MS had significantly higher prevalence of asthma (adjusted odds ratio = 1.34; 95% confidence interval = 1.09–1.64), and those who had greater waist circumference and lower HDL-C were especially likely to have asthma. Participants with IR and systemic inflammation were associated with higher prevalence of asthma. Prevalence of IR and systemic inflammation were higher in participants with MS or with each MS component. The MS-asthma association was substantially mediated by IR and systemic inflammation. Our study showed a significant association between MS and asthma in the elderly. MS might affect asthma through both IR and systemic inflammation. More... »

PAGES

9378

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/s41598-018-26621-z

DOI

http://dx.doi.org/10.1038/s41598-018-26621-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104611837

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29925841


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Asthma", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cholesterol, HDL", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cross-Sectional Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Inflammation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Insulin Resistance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Syndrome", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Waist Circumference", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States", 
          "id": "http://www.grid.ac/institutes/grid.40263.33", 
          "name": [
            "Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States", 
            "Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sangshin", 
        "id": "sg:person.0756542233.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756542233.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Health Convergence, Ewha Womans University, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.255649.9", 
          "name": [
            "Department of Health Convergence, Ewha Womans University, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Nam-Kyong", 
        "id": "sg:person.0756753232.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756753232.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Allergy and Pulmonology, Department of Internal Medicine, Catholic University of Korea Daejeon St. Mary\u2019s Hospital, Daejeon, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.470171.4", 
          "name": [
            "Division of Allergy and Pulmonology, Department of Internal Medicine, Catholic University of Korea Daejeon St. Mary\u2019s Hospital, Daejeon, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Seungsoo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Chang-Hoon", 
        "id": "sg:person.0743464132.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743464132.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00280883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027902786", 
          "https://doi.org/10.1007/bf00280883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1939-4551-7-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046814620", 
          "https://doi.org/10.1186/1939-4551-7-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1939-4551-7-s1-p8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016035728", 
          "https://doi.org/10.1186/1939-4551-7-s1-p8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2458-12-204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030267047", 
          "https://doi.org/10.1186/1471-2458-12-204"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-20", 
    "datePublishedReg": "2018-06-20", 
    "description": "The burden of asthma in the elderly is increasing, but the etiology of asthma in the elderly is not clearly understood. Recent studies have reported the epidemiological link between metabolic syndrome (MS) and asthma, but it has rarely been studied in the elderly. This study investigated the association between MS and asthma and the contribution of insulin resistance (IR) and systemic inflammation to this MS-asthma association in the elderly. Our study analyzed 4,060 elderly participants (\u226565 years old) from a cross-sectional survey, the Korean National Health and Nutritional Examination Survey 2007\u20132012. Mediation analyses were performed to examine whether IR and systemic inflammation mediates the MS-asthma association. Participants with MS had significantly higher prevalence of asthma (adjusted odds ratio\u2009=\u20091.34; 95% confidence interval\u2009=\u20091.09\u20131.64), and those who had greater waist circumference and lower HDL-C were especially likely to have asthma. Participants with IR and systemic inflammation were associated with higher prevalence of asthma. Prevalence of IR and systemic inflammation were higher in participants with MS or with each MS component. The MS-asthma association was substantially mediated by IR and systemic inflammation. Our study showed a significant association between MS and asthma in the elderly. MS might affect asthma through both IR and systemic inflammation.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/s41598-018-26621-z", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1045337", 
        "issn": [
          "2045-2322"
        ], 
        "name": "Scientific Reports", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "8"
      }
    ], 
    "keywords": [
      "systemic inflammation", 
      "metabolic syndrome", 
      "insulin resistance", 
      "high prevalence", 
      "Nutritional Examination Survey 2007", 
      "prevalence of IR", 
      "burden of asthma", 
      "Korean National Health", 
      "etiology of asthma", 
      "greater waist circumference", 
      "cross-sectional survey", 
      "low HDL", 
      "waist circumference", 
      "National Health", 
      "MS components", 
      "asthma", 
      "inflammation", 
      "epidemiological link", 
      "significant association", 
      "elderly participants", 
      "prevalence", 
      "syndrome", 
      "association", 
      "participants", 
      "Recent studies", 
      "mediation analysis", 
      "etiology", 
      "HDL", 
      "study", 
      "circumference", 
      "burden", 
      "health", 
      "resistance", 
      "survey", 
      "relationship", 
      "analysis", 
      "components", 
      "link", 
      "contribution"
    ], 
    "name": "The relationship between metabolic syndrome and asthma in the elderly", 
    "pagination": "9378", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104611837"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/s41598-018-26621-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29925841"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/s41598-018-26621-z", 
      "https://app.dimensions.ai/details/publication/pub.1104611837"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_764.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/s41598-018-26621-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26621-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26621-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26621-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/s41598-018-26621-z'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      80 URIs      68 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/s41598-018-26621-z schema:about N1aa6d267d5a74301941c30ad8e8b4b21
2 N2caf705881d94ef58096bd0f75bc6b81
3 N58074a994e5f4771bb5e317bcdf969cf
4 N5d7df4b852cc438b9969b2246ab0a2b3
5 N5ebbf4fe141f4c3a85c67c6cff86e3ef
6 N75ea7c340ef04deeb7f450905d5b4463
7 Na6dfb9c96f074dc98ad726b0a00f0be9
8 Nad545ffc84c04137bedb14c32c19d22a
9 Nbf587672bea2451fad26a1b6514ecef4
10 Nc59ca99774f64e13b187af071bb06d45
11 Nd2afef49c3244bc4b1f873e115d999c7
12 Nda344fcba603486b8bf59cf354eab4b8
13 anzsrc-for:11
14 anzsrc-for:1102
15 schema:author N2a05b9f0596841fa85491eb9c3cfc41f
16 schema:citation sg:pub.10.1007/bf00280883
17 sg:pub.10.1186/1471-2458-12-204
18 sg:pub.10.1186/1939-4551-7-8
19 sg:pub.10.1186/1939-4551-7-s1-p8
20 schema:datePublished 2018-06-20
21 schema:datePublishedReg 2018-06-20
22 schema:description The burden of asthma in the elderly is increasing, but the etiology of asthma in the elderly is not clearly understood. Recent studies have reported the epidemiological link between metabolic syndrome (MS) and asthma, but it has rarely been studied in the elderly. This study investigated the association between MS and asthma and the contribution of insulin resistance (IR) and systemic inflammation to this MS-asthma association in the elderly. Our study analyzed 4,060 elderly participants (≥65 years old) from a cross-sectional survey, the Korean National Health and Nutritional Examination Survey 2007–2012. Mediation analyses were performed to examine whether IR and systemic inflammation mediates the MS-asthma association. Participants with MS had significantly higher prevalence of asthma (adjusted odds ratio = 1.34; 95% confidence interval = 1.09–1.64), and those who had greater waist circumference and lower HDL-C were especially likely to have asthma. Participants with IR and systemic inflammation were associated with higher prevalence of asthma. Prevalence of IR and systemic inflammation were higher in participants with MS or with each MS component. The MS-asthma association was substantially mediated by IR and systemic inflammation. Our study showed a significant association between MS and asthma in the elderly. MS might affect asthma through both IR and systemic inflammation.
23 schema:genre article
24 schema:isAccessibleForFree true
25 schema:isPartOf N5d3fdcc4379c4b67a646c536f236e812
26 Nf823d7ac40b74eb4b7c0bb2ea7b2eef8
27 sg:journal.1045337
28 schema:keywords HDL
29 Korean National Health
30 MS components
31 National Health
32 Nutritional Examination Survey 2007
33 Recent studies
34 analysis
35 association
36 asthma
37 burden
38 burden of asthma
39 circumference
40 components
41 contribution
42 cross-sectional survey
43 elderly participants
44 epidemiological link
45 etiology
46 etiology of asthma
47 greater waist circumference
48 health
49 high prevalence
50 inflammation
51 insulin resistance
52 link
53 low HDL
54 mediation analysis
55 metabolic syndrome
56 participants
57 prevalence
58 prevalence of IR
59 relationship
60 resistance
61 significant association
62 study
63 survey
64 syndrome
65 systemic inflammation
66 waist circumference
67 schema:name The relationship between metabolic syndrome and asthma in the elderly
68 schema:pagination 9378
69 schema:productId Nb52f2b538cbd4fb9abe25253e40fee3b
70 Nbccfbaba6e0d489993d9c7e8cf164ad5
71 Nc5192daab01f4450bcbc573c0a585a66
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104611837
73 https://doi.org/10.1038/s41598-018-26621-z
74 schema:sdDatePublished 2022-09-02T16:02
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N32ad388f0afe40eab98fa020c77790ca
77 schema:url https://doi.org/10.1038/s41598-018-26621-z
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N1aa6d267d5a74301941c30ad8e8b4b21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Aged, 80 and over
83 rdf:type schema:DefinedTerm
84 N2a05b9f0596841fa85491eb9c3cfc41f rdf:first sg:person.0756542233.38
85 rdf:rest N893881917faa4a71bb664a4b4bbbc73c
86 N2caf705881d94ef58096bd0f75bc6b81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Inflammation
88 rdf:type schema:DefinedTerm
89 N32ad388f0afe40eab98fa020c77790ca schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 N58074a994e5f4771bb5e317bcdf969cf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Aged
93 rdf:type schema:DefinedTerm
94 N5d3fdcc4379c4b67a646c536f236e812 schema:volumeNumber 8
95 rdf:type schema:PublicationVolume
96 N5d7df4b852cc438b9969b2246ab0a2b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Cholesterol, HDL
98 rdf:type schema:DefinedTerm
99 N5ebbf4fe141f4c3a85c67c6cff86e3ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Asthma
101 rdf:type schema:DefinedTerm
102 N75ea7c340ef04deeb7f450905d5b4463 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Male
104 rdf:type schema:DefinedTerm
105 N8876af064c34450e8c789c5bd6ab2021 rdf:first Nb642498aadac48b49c39a7a0e3a9bb25
106 rdf:rest Nfc27c23db3cb4a55b99067c94df22de1
107 N893881917faa4a71bb664a4b4bbbc73c rdf:first sg:person.0756753232.99
108 rdf:rest N8876af064c34450e8c789c5bd6ab2021
109 Na6dfb9c96f074dc98ad726b0a00f0be9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Female
111 rdf:type schema:DefinedTerm
112 Nad545ffc84c04137bedb14c32c19d22a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Humans
114 rdf:type schema:DefinedTerm
115 Nb52f2b538cbd4fb9abe25253e40fee3b schema:name dimensions_id
116 schema:value pub.1104611837
117 rdf:type schema:PropertyValue
118 Nb642498aadac48b49c39a7a0e3a9bb25 schema:affiliation grid-institutes:grid.470171.4
119 schema:familyName Kim
120 schema:givenName Seungsoo
121 rdf:type schema:Person
122 Nbccfbaba6e0d489993d9c7e8cf164ad5 schema:name pubmed_id
123 schema:value 29925841
124 rdf:type schema:PropertyValue
125 Nbf587672bea2451fad26a1b6514ecef4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Waist Circumference
127 rdf:type schema:DefinedTerm
128 Nc5192daab01f4450bcbc573c0a585a66 schema:name doi
129 schema:value 10.1038/s41598-018-26621-z
130 rdf:type schema:PropertyValue
131 Nc59ca99774f64e13b187af071bb06d45 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Insulin Resistance
133 rdf:type schema:DefinedTerm
134 Nd2afef49c3244bc4b1f873e115d999c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Cross-Sectional Studies
136 rdf:type schema:DefinedTerm
137 Nda344fcba603486b8bf59cf354eab4b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Metabolic Syndrome
139 rdf:type schema:DefinedTerm
140 Nf823d7ac40b74eb4b7c0bb2ea7b2eef8 schema:issueNumber 1
141 rdf:type schema:PublicationIssue
142 Nfc27c23db3cb4a55b99067c94df22de1 rdf:first sg:person.0743464132.81
143 rdf:rest rdf:nil
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
148 schema:name Cardiorespiratory Medicine and Haematology
149 rdf:type schema:DefinedTerm
150 sg:journal.1045337 schema:issn 2045-2322
151 schema:name Scientific Reports
152 schema:publisher Springer Nature
153 rdf:type schema:Periodical
154 sg:person.0743464132.81 schema:affiliation grid-institutes:grid.412484.f
155 schema:familyName Lee
156 schema:givenName Chang-Hoon
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743464132.81
158 rdf:type schema:Person
159 sg:person.0756542233.38 schema:affiliation grid-institutes:grid.40263.33
160 schema:familyName Park
161 schema:givenName Sangshin
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756542233.38
163 rdf:type schema:Person
164 sg:person.0756753232.99 schema:affiliation grid-institutes:grid.255649.9
165 schema:familyName Choi
166 schema:givenName Nam-Kyong
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756753232.99
168 rdf:type schema:Person
169 sg:pub.10.1007/bf00280883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027902786
170 https://doi.org/10.1007/bf00280883
171 rdf:type schema:CreativeWork
172 sg:pub.10.1186/1471-2458-12-204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030267047
173 https://doi.org/10.1186/1471-2458-12-204
174 rdf:type schema:CreativeWork
175 sg:pub.10.1186/1939-4551-7-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046814620
176 https://doi.org/10.1186/1939-4551-7-8
177 rdf:type schema:CreativeWork
178 sg:pub.10.1186/1939-4551-7-s1-p8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016035728
179 https://doi.org/10.1186/1939-4551-7-s1-p8
180 rdf:type schema:CreativeWork
181 grid-institutes:grid.255649.9 schema:alternateName Department of Health Convergence, Ewha Womans University, Seoul, Republic of Korea
182 schema:name Department of Health Convergence, Ewha Womans University, Seoul, Republic of Korea
183 rdf:type schema:Organization
184 grid-institutes:grid.40263.33 schema:alternateName Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States
185 schema:name Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States
186 Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States
187 rdf:type schema:Organization
188 grid-institutes:grid.412484.f schema:alternateName Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
189 schema:name Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
190 rdf:type schema:Organization
191 grid-institutes:grid.470171.4 schema:alternateName Division of Allergy and Pulmonology, Department of Internal Medicine, Catholic University of Korea Daejeon St. Mary’s Hospital, Daejeon, Republic of Korea
192 schema:name Division of Allergy and Pulmonology, Department of Internal Medicine, Catholic University of Korea Daejeon St. Mary’s Hospital, Daejeon, Republic of Korea
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...